218 research outputs found

    Andreev reflection at QGP/CFL interface

    Full text link
    In this letter we address the question of the phenomena of Andreev reflection between the cold quark-gluon plasma phase and CFL color superconductor. We show that there are two different types of reflections connected to the structure of the CFL phase. We also calculate the probability current at the interface and we show that it vanishes for energy of scattering quarks below the superconducting gap.Comment: 6 pages, 1 figure. Minor changes in the "Conclusions

    Integration of Catalysis with Storage for the Design of Multi-Electron Photochemistry Devices for Solar Fuel

    Get PDF
    Decarbonization of the transport system and a transition to a new diversified energy system that is scalable and sustainable, requires a widespread implementation of carbon-neutral fuels. In biomimetic supramolecular nanoreactors for solar-to-fuel conversion, water-splitting catalysts can be coupled to photochemical units to form complex electrochemical nanostructures, based on a systems integration approach and guided by magnetic resonance knowledge of the operating principles of biological photosynthesis, to bridge between long-distance energy transfer on the short time scale of fluorescence, ~10−9 s, and short-distance proton-coupled electron transfer and storage on the much longer time scale of catalysis, ~10−3 s. A modular approach allows for the design of nanostructured optimized topologies with a tunneling bridge for the integration of storage with catalysis and optimization of proton chemical potentials, to mimic proton-coupled electron transfer processes in photosystem II and hydrogenase

    Serum kynurenic acid is reduced in affective psychosis

    Get PDF
    A subgroup of individuals with mood and psychotic disorders shows evidence of inflammation that leads to activation of the kynurenine pathway and the increased production of neuroactive kynurenine metabolites. Depression is hypothesized to be causally associated with an imbalance in the kynurenine pathway, with an increased metabolism down the 3-hydroxykynurenine (3HK) branch of the pathway leading to increased levels of the neurotoxic metabolite, quinolinic acid (QA), which is a putative Nmethyl- D-aspartate (NMDA) receptor agonist. In contrast, schizophrenia and psychosis are hypothesized to arise from increased metabolism of the NMDA receptor antagonist, kynurenic acid (KynA), leading to hypofunction of GABAergic interneurons, the disinhibition of pyramidal neurons and striatal hyperdopaminergia. Here we present results that challenge the model of excess KynA production in affective psychosis. After rigorous control of potential confounders and multiple testing we find significant reductions in serum KynA and/or KynA/QA in acutely ill inpatients with major depressive disorder (N = 35), bipolar disorder (N = 53) and schizoaffective disorder (N = 40) versus healthy controls (N = 92). No significant difference was found between acutely ill inpatients with schizophrenia (n = 21) and healthy controls. Further, a post hoc comparison of patients divided into the categories of non-psychotic affective disorder, affective psychosis and psychotic disorder (non-affective) showed that the greatest decrease in KynA was in the affective psychosis group relative to the other diagnostic groups. Our results are consistent with reports of elevations in proinflammatory cytokines in psychosis, and preclinical work showing that inflammation upregulates the enzyme, kynurenine mono-oxygenase (KMO), which converts kynurenine into 3-hydroxykynurenine and quinolinic acid

    Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon

    Get PDF
    Identifying effective treatment combinations for MS patients failing standard therapy is an important goal. We report the results of a phase II open label baseline-to-treatment trial of a humanized monoclonal antibody against CD25 (daclizumab) in 10 multiple sclerosis patients with incomplete response to IFN-β therapy and high brain inflammatory and clinical disease activity. Daclizumab was very well tolerated and led to a 78% reduction in new contrast-enhancing lesions and to a significant improvement in several clinical outcome measures

    Common Variants of TLR1 Associate with Organ Dysfunction and Sustained Pro-Inflammatory Responses during Sepsis

    Get PDF
    Background: Toll-like receptors (TLRs) are critical components for host pathogen recognition and variants in genes participating in this response influence susceptibility to infections. Recently, TLR1 gene polymorphisms have been found correlated with whole blood hyper-inflammatory responses to pathogen-associated molecules and associated with sepsis-associated multiorgan dysfunction and acute lung injury (ALI). We examined the association of common variants of TLR1 gene with sepsis-derived complications in an independent study and with serum levels for four inflammatory biomarker among septic patients. Methodology/Principal Findings: Seven tagging single nucleotide polymorphisms of the TLR1 gene were genotyped in samples from a prospective multicenter case-only study of patients with severe sepsis admitted into a network of intensive care units followed for disease severity. Interleukin (IL)-1 b, IL-6, IL-10, and C-reactive protein (CRP) serum levels were measured at study entry, at 48 h and at 7th day. Alleles -7202G and 248Ser, and the 248Ser-602Ile haplotype were associated with circulatory dysfunction among severe septic patients (0.001<=p <= 0.022), and with reduced IL-10 (0.012<= p <=0.047) and elevated CRP (0.011<= p <=0.036) serum levels during the first week of sepsis development. Additionally, the -7202GG genotype was found to be associated with hospital mortality (p =0.017) and ALI (p =0.050) in a combined analysis with European Americans, suggesting common risk effects among studies Conclusions/Significance: These results partially replicate and extend previous findings, supporting that variants of TLR1 gene are determinants of severe complications during sepsis

    Respiratory epithelial cells require Toll-like receptor 4 for induction of Human β-defensin 2 by Lipopolysaccharide

    Get PDF
    BACKGROUND: The respiratory epithelium is a major portal of entry for pathogens and employs innate defense mechanisms to prevent colonization and infection. Induced expression of human β-defensin 2 (HBD2) represents a direct response by the epithelium to potential infection. Here we provide evidence for the critical role of Toll-like receptor 4 (TLR4) in lipopolysaccharide (LPS)-induced HBD2 expression by human A549 epithelial cells. METHODS: Using RTPCR, fluorescence microscopy, ELISA and luciferase reporter gene assays we quantified interleukin-8, TLR4 and HBD2 expression in unstimulated or agonist-treated A549 and/or HEK293 cells. We also assessed the effect of over expressing wild type and/or mutant TLR4, MyD88 and/or Mal transgenes on LPS-induced HBD2 expression in these cells. RESULTS: We demonstrate that A549 cells express TLR4 on their surface and respond directly to Pseudomonas LPS with increased HBD2 gene and protein expression. These effects are blocked by a TLR4 neutralizing antibody or functionally inactive TLR4, MyD88 and/or Mal transgenes. We further implicate TLR4 in LPS-induced HBD2 production by demonstrating HBD2 expression in LPS non-responsive HEK293 cells transfected with a TLR4 expression plasmid. CONCLUSION: This data defines an additional role for TLR4 in the host defense in the lung

    Effects of the TLR2 Agonists MALP-2 and Pam3Cys in Isolated Mouse Lungs

    Get PDF
    Background: Gram-positive and Gram-negative bacteria are main causes of pneumonia or acute lung injury. They are recognized by the innate immune system via toll-like receptor-2 (TLR2) or TLR4, respectively. Among all organs, the lungs have the highest expression of TLR2 receptors, but little is known about the pulmonary consequences of their activation. Here we studied the effects of the TLR2/6 agonist MALP-2, the TLR2/1 agonist Pam 3Cys and the TLR4 agonist lipopolysaccharide (LPS) on pro-inflammatory responses in isolated lungs. Methodology/Principal Findings: Isolated perfused mouse lungs were perfused for 60 min or 180 min with MALP-2 (25 ng/ mL), Pam3Cys (160 ng/mL) or LPS (1 mg/mL). We studied mediator release by enzyme linked immunosorbent assay (ELISA), the activation of mitogen activated protein kinase (MAPK) and AKT/protein kinase B by immunoblotting, and gene induction by quantitative polymerase chain reaction. All agonists activated the MAPK ERK1/2 and p38, but neither JNK or AKT kinase. The TLR ligands upregulated the inflammation related genes Tnf, Il1b, Il6, Il10, Il12, Ifng, Cxcl2 (MIP-2a) and Ptgs2. MALP-2 was more potent than Pam 3Cys in inducing Slpi, Cxcl10 (IP10) and Parg. Remarkable was the strong induction of Tnc by MALP2, which was not seen with Pam 3Cys or LPS. The growth factor related genes Areg and Hbegf were not affected. In addition, all three TLR agonists stimulated the release of IL-6, TNF, CXCL2 and CXCL10 protein from the lungs

    Electrical properties of ferroelectric YMnO3 films deposited on n-type Si (111) substrates

    Full text link
    YMnO3 thin films were grown on n - type Si substrate by nebulized spray pyrolysis in Metal - Ferroelectric - Semiconductor (MFS) configuration. The C-V characteristics of the film in MFS structure exhibit hysteretic behavior consistent with the polarization charge switching direction, with the memory window decreasing with increase in temperature. The density of interface states decreases with the increase in the annealing temperature. Mapping of the silicon energy band gap with the interface states has been carried out. The leakage current measured in the accumulation region, is lower in well-crystallized thin films and obeys a space- charge limited conduction mechanism. The calculated activation energy from the dc leakage current characteristics of Arhennius plot reveals that the activation energy correspond to the oxygen vacancy motionComment: 26 pages, 1 table, 8 figures, submitted to submitted to J. Phys. D; applied physics on 5th feb 200

    Temporal changes in secondary prevention and cardiovascular outcomes after revascularization for peripheral arterial disease in Denmark: a nationwide cohort study

    Get PDF
    Background:Patients with peripheral arterial disease (PAD) are at increased risk of cardiovascular morbidity and mortality. Medical prevention with antithrombotic and statin therapies is a mainstay of treatment to prevent adverse outcomes; nevertheless, patients with PAD are often undertreated. This study describes the temporal changes in medical prevention and adverse outcomes in a national cohort of patients with symptomatic PAD after revascularization.Methods:We identified all patients with a first open surgical or endovascular revascularization procedure in the lower extremities or abdomen in Denmark, from 2000 to 2016. We examined temporal changes in the use of aspirin, clopidogrel, and statins and 1-year cause-specific hazard ratios for adverse clinical outcomes, after adjusting for procedure type, treatment indication, age, sex, and cardiovascular risk factors. The analyses were performed overall and within strata of index procedure (endovascular versus surgical), treatment indication, age, sex, and high-risk comorbidities.Results:Between 2000 and 2016, we identified 32 911 patients who underwent revascularization for symptomatic PAD. The mean age was 69 years and increased over time, as did the burden of comorbidity. The cumulative incidence of medication use increased between 2000 to 2004 and 2013 to 2016, respectively, from 57.3% to 64.3% for aspirin, 3.6% to 24.8% for clopidogrel, and 36.2% to 77.1% for statins. Concurrently, the 1-year outcome rates declined. Compared with 2000 to 2004, the adjusted hazard ratios in 2013 to 2016 were 0.73 (95% CI, 0.62-0.84) for major adverse cardiovascular events, 0.92 (95% CI, 0.85-1.00) for major adverse limb events, 0.60 (95% CI, 0.48-0.74) for myocardial infarction, 0.94 (95% CI, 0.75-1.18) for ischemic stroke, 0.92 (95% CI, 0.75-1.12) for major bleeding, 0.54 (95% CI, 0.39-0.76) for cardiovascular death, and 0.80 (95% CI, 0.72-0.88) for all-cause death. These improvements in prognosis were most prominent from 2000 to 2004 to 2005 to 2008 and occurred in all strata of index procedure, treatment indication, sex, age, and comorbidity. In contrast, the adjusted hazard ratio for major amputations was 1.00 (95% CI, 0.90-1.11) when comparing 2013 to 2016 to 2000 to 2004.Conclusions:Medical prevention of adverse events has increased considerably over time in patients who underwent revascularization for symptomatic PAD. This increase was accompanied by reductions in all adverse outcomes, except major amputations.Diabetes mellitus: pathophysiological changes and therap

    A genome-wide expression analysis identifies a network of EpCAM-induced cell cycle regulators

    Get PDF
    Expression of the epithelial cell adhesion molecule EpCAM is upregulated in a variety of carcinomas. This antigen is therefore explored in tumour diagnosis, and clinical trials have been initiated to examine EpCAM-based therapies. Notably, the possible intracellular effects and signalling pathways triggered by EpCAM-specific antibodies are unknown. Here, we show treatment of the mouse lung carcinoma cell line A2C12, of the human lung carcinoma cell line A549 and the human colorectal cell line Caco-2 with the monoclonal EpCAM antibody G8.8 to cause dose dependently an increase in cell proliferation, as determined by the MTS and the 5′-bromo-2′-deoxyuridine (BrdU) labelling assay. Furthermore, a genome-wide approach identified networks of regulated genes, most notably cell cycle regulators, upon treatment with an EpCAM-specific antibody. Indeed, changes in the expression of cell cycle regulators agreed well with the BrdU labelling data, and an analysis of differentially expressed genes revealed the processes with the strongest over-representation of modulated genes, for example, cell cycle, cell death, cellular growth and proliferation, and cancer. These data suggest that EpCAM is involved in signal transduction triggering several intracellular signalling pathways. Knowing EpCAM signalling pathways might lead to a reassessment of EpCAM-based therapies
    • …
    corecore