24 research outputs found

    Resection of the mesopancreas (RMP): a new surgical classification of a known anatomical space

    Get PDF
    BACKGROUND: Prognosis after surgical therapy for pancreatic cancer is poor and has been attributed to early lymph node involvement as well as to a strong tendency of cancer cells to infiltrate into the retropancreatic tissue and to spread along the peripancreatic neural plexuses. The objective of our study was to classify the anatomical-surgical layer of the mesopancreas and to describe the surgical principles relevant for resection of the mesopancreas (RMP). Immunohistochemical investigation of the mesopancreatic-perineural lymphogenic structures was carried out with the purpose of identifying possible routes of metastatic spread. METHODS: Resection of the mesopancreas (RMP) was performed in fresh corpses. Pancreas and mesopancreas were separated from each other and the mesopancreas was immunohistochemically investigated. RESULTS: The mesopancreas strains itself dorsally of the mesenteric vessels as a whitish-firm, fatty tissue-like layer. Macroscopically, in the dissected en-bloc specimens of pancreas and mesopancreas nerve plexuses were found running from the dorsal site of the pancreatic head to the mesopancreas to establish a perineural plane. Immunohistochemical examinations revealed the lymphatic vessels localized in direct vicinity of the neuronal plexuses between pancreas and mesopancreas. CONCLUSION: The mesopancreas as a perineural lymphatic layer located dorsally to the pancreas and reaching beyond the mesenteric vessels has not been classified in the anatomical or surgical literature before. The aim to ensure the greatest possible distance from the retropancreatic lymphatic tissue which drains the carcinomatous focus can be achieved in patients with pancreatic cancer only by complete resection of the mesopancreas (RMP)

    Active zone proteins are dynamically associated with synaptic ribbons in rat pinealocytes

    Get PDF
    Synaptic ribbons (SRs) are prominent organelles that are abundant in the ribbon synapses of sensory neurons where they represent a specialization of the cytomatrix at the active zone (CAZ). SRs occur not only in neurons, but also in neuroendocrine pinealocytes where their function is still obscure. In this study, we report that pinealocyte SRs are associated with CAZ proteins such as Bassoon, Piccolo, CtBP1, Munc13–1, and the motorprotein KIF3A and, therefore, consist of a protein complex that resembles the ribbon complex of retinal and other sensory ribbon synapses. The pinealocyte ribbon complex is biochemically dynamic. Its protein composition changes in favor of Bassoon, Piccolo, and Munc13–1 at night and in favor of KIF3A during the day, whereas CtBP1 is equally present during the night and day. The diurnal dynamics of the ribbon complex persist under constant darkness and decrease after stimulus deprivation of the pineal gland by constant light. Our findings indicate that neuroendocrine pinealocytes possess a protein complex that resembles the CAZ of ribbon synapses in sensory organs and whose dynamics are under circadian regulation

    Microenvironmental adaptation of experimental tumours to chronic vs acute hypoxia

    Get PDF
    This study investigated long-term microenvironmental responses (oxygenation, perfusion, metabolic status, proliferation, vascular endothelial growth factor (VEGF) expression and vascularisation) to chronic hypoxia in experimental tumours. Experiments were performed using s.c.-implanted DS-sarcomas in rats. In order to induce more pronounced tumour hypoxia, one group of animals was housed in a hypoxic atmosphere (8% O2) for the whole period of tumour growth (chronic hypoxia). A second group was acutely exposed to inspiratory hypoxia for only 20 min prior to the measurements (acute hypoxia), whereas animals housed under normal atmospheric conditions served as controls. Acute hypoxia reduced the median oxygen partial pressure (pO2) dramatically (1 vs 10 mmHg in controls), whereas in chronically hypoxic tumours the pO2 was significantly improved (median pO2=4 mmHg), however not reaching the control level. These findings reflect the changes in tumour perfusion where acutely hypoxic tumours show a dramatic reduction of perfused tumour vessels (maybe the result of a simultaneous reduction in arterial blood pressure). In animals under chronic inspiratory hypoxia, the number of perfused vessels increased (compared to acute hypoxia), although the perfusion pattern found in control tumours was not reached. In the chronically hypoxic animals, tumour cell proliferation and tumour growth were significantly reduced, whereas no differences in VEGF expression and vascular density between these groups were observed. These results suggest that long-term adaptation of tumours to chronic hypoxia in vivo, while not affecting vascularity, does influence the functional status of the microvessels in favour of a more homogeneous perfusion

    Pseudomonas aeruginosa mutants defective in glucose uptake have pleiotropic phenotype and altered virulence in non-mammal infection models

    Get PDF
    Pseudomonas spp. are endowed with a complex pathway for glucose uptake that relies on multiple transporters. In this work we report the construction and characterization of Pseudomonas aeruginosa single and multiple mutants with unmarked deletions of genes encoding outer membrane (OM) and inner membrane (IM) proteins involved in glucose uptake. We found that a triple \u394gltKGF \u394gntP \u394kguT mutant lacking all known IM transporters (named GUN for Glucose Uptake Null) is unable to grow on glucose as unique carbon source. More than 500 genes controlling both metabolic functions and virulence traits show differential expression in GUN relative to the parental strain. Consistent with transcriptomic data, the GUN mutant displays a pleiotropic phenotype. Notably, the genome-wide transcriptional profile and most phenotypic traits differ between the GUN mutant and the wild type strain irrespective of the presence of glucose, suggesting that the investigated genes may have additional roles besides glucose transport. Finally, mutants carrying single or multiple deletions in the glucose uptake genes showed attenuated virulence relative to the wild type strain in Galleria mellonella, but not in Caenorhabditis elegans infection model, supporting the notion that metabolic functions may deeply impact P. aeruginosa adaptation to specific environments found inside the host

    Antitumor effect of the vascular-disrupting agent ZD6126 in a murine renal cell carcinoma model.

    No full text
    ZD6126 is a vascular-disrupting agent that affects the endothelial tubulin cytoskeleton causing selective occlusion of tumor vasculature and extensive tumor cell necrosis. The present study evaluated the antitumor and antivascular activities of ZD6126 in the clinically relevant murine renal cell carcinoma (RENCA) model and also evaluated biological response to therapy using color Doppler imaging as biomarker. Mice were implanted with RENCA tumor cells (day 0) and established tumors were treated with ZD6126 (100 mg/kg i.p.) or vehicle with repeated intermittent doses on day 10, 14 and 18. ZD6126 treatment led to a significant reduction in tumor size and was associated with extensive tumor necrosis and a reduction in tumor blood flow versus controls. MVD increased with intermittent treatment (day 10, 14 and 18). In an additional study, animals were treated at day 19 and quantitative three-dimensional microvascular corrosion casting was performed to enable detailed assessment of the tumor vascular architecture. Corrosion casting showed that tumor vessel architecture is affected by treatment, whereas pre-existing vessels in control tissues are practically not affected. Inter-vessel and inter-branch distances as well as vessel diameters are influenced by treatment. In conclusion, ZD6126 showed potent antitumor efficacy in the RENCA model and our data suggest that decrease in tumor blood flow may be a useful surrogate marker of treatment effect

    Structural adaptations in the murine colon microcirculation associated with hapten‐induced inflammation

    No full text
    BACKGROUND: Blood flowing across the vascular endothelium creates wall shear stress, dependent on velocity of flow and vessel geometry, that tends to disrupt lymphocyte–endothelial cell adhesion. OBJECTIVE: The microcirculation in a murine model of acute colitis was investigated to identify structural adaptations during acute colitis that may facilitate transmigration. METHODS: In 2,4,6‐trinitrobenzenesulphonic acid‐induced acute colitis, the infiltrating cells and colonic microcirculation was investigated by cellular topographic mapping, corrosion casting and three‐dimensional scanning electron microscopy (SEM). Colonic blood velocimetry was performed using intravital microscopy. RESULTS: Clinical and histological parameters suggested a peak inflammatory response at 96 h (p<0.001). The infiltrating cells were spatially related to the mucosal capillary plexus by three‐dimensional topographic mapping (p<0.001). In normal mice, corrosion casting and three‐dimensional SEM showed a polygonal mucosal plexus supplied by ascending arteries and descending veins. After 2,4,6‐trinitrobenzenesulphonic acid stimulation, three‐dimensional SEM showed preserved branch angles (p = 0.52) and nominal vessel lengths (p = 0.93), but a significantly dilated mucosal capillary plexus (p<0.001). Intravital microscopy of the mucosal plexus showed a greater than twofold decrease in the velocity of flow (p<0.001). CONCLUSIONS: The demonstrable slowing of the velocity of flow despite an increase in volumetric flow suggests that these microvascular adaptations create conditions suitable for leucocyte adhesion and transmigration
    corecore