14 research outputs found

    Temporal variations of vegetative features, sex ratios and reproductive phenology in a Dictyota dichotoma (Dictyotales, Phaeophyceae) population of Argentina

    Get PDF
    This paper addresses the phenology of a Dictyota dichotoma population from the North Patagonian coasts of Argentina. The morphology of the individuals was characterized, and analyses of the temporal variations of vegetative features, diploid and haploid life cycle generations and sex ratios are provided. Individuals, represented by growing sporophytes and gametophytes, occurred simultaneously throughout the year. Morphological variables showed temporal variation, except the width and height of medullary cells, which did not vary between seasons. All vegetative variables were significantly correlated with daylength. Besides, frond length, frond dry mass and apical and basal branching angles were significantly correlated with seawater temperatures. Vegetative thalli were less abundant than haploid and diploid thalli. Sporophytes were less abundant than male and female gametophytes. Male gametophytes dominated in May, August, October and January, and female gametophytes were more abundant in September, November, December, February and March. The formation of female gametangia showed a significant correlation with daylength, and the highest number of gametangia was registered in spring. In general, the male/female sex ratio varied between 1:2 and 1:1. Apical regions were more fertile than basal regions. Our data about frequency in the formation of reproductive structures and male/female ratios are the first recorded in the Dictyota genus and thus could not be compared with populations from other regions of the world. Significant morphological variation was observed in thalli of both life cycle generations, regarding length and dry mass, number of primary branches and branching basal angle. In general, all variables analyzed varied seasonally except cortical cell width.Fil: Gauna, Maria Cecilia. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Laboratorio de Ecología Acuática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); ArgentinaFil: Caceres, Eduardo Jorge. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Laboratorio de Ficología y Micología; ArgentinaFil: Parodi, Elisa Rosalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Laboratorio de Ecología Acuática; Argentin

    Water-Borne Cues of a Non-Indigenous Seaweed Mediate Grazer-Deterrent Responses in Native Seaweeds, but Not Vice Versa

    Get PDF
    Plants optimise their resistance to herbivores by regulating deterrent responses on demand. Induction of anti-herbivory defences can occur directly in grazed plants or from emission of risk cues to the environment, which modifies interactions of adjacent plants with, for instance, their consumers. This study confirmed the induction of anti-herbivory responses by water-borne risk cues between adjoining con-specific seaweeds and firstly examined whether plant-plant signalling also exists among adjacent hetero-specific seaweeds. Furthermore, differential abilities and geographic variation in plant-plant signalling by a non-indigenous seaweed as well as native seaweeds were assessed. Twelve-day induction experiments using the non-indigenous seaweed Sargassum muticum were conducted in the laboratory in Portugal and Germany with one local con-familiar (Portugal: Cystoseira humilis, Germany: Halidrys siliquosa) and hetero-familiar native species (Portugal: Fucus spiralis, Germany: F. vesiculosus). All seaweeds were grazed by a local isopod species (Portugal: Stenosoma nadejda, Germany: Idotea baltica) and were positioned upstream of con- and hetero-specific seaweeds. Grazing-induced modification in seaweed traits were tested in three-day feeding assays between cue-exposed and cue-free ( = control) pieces of both fresh and reconstituted seaweeds. Both Fucus species reduced their palatability when positioned downstream of isopod-grazed con-specifics. Yet, the palatability of non-indigenous S. muticum remained constant in the presence of upstream grazed con-specifics and native hetero-specifics. In contrast, both con-familiar (but neither hetero-familiar) native species reduced palatability when located downstream of grazed S. muticum. Similar patterns of grazer-deterrent responses to water-borne cues were observed on both European shores, and were almost identical between assays using fresh and reconstituted seaweeds. Hence, seaweeds may use plant-plant signalling to optimise chemical resistance to consumers, though this ability appeared to be species-specific. Furthermore, this study suggests that native species may benefit more than a non-indigenous species from water-borne cue mediated reduction in consumption as only natives responded to signals emitted by hetero-specifics

    The interaction between the proliferating macroalga Asparagopsis taxiformis and the coral Astroides calycularis induces changes in microbiome and metabolomic fingerprints

    Get PDF
    Mediterranean Sea ecosystems are considered as hotspots of biological introductions, exposed to possible negative effects of non-indigenous species. In such temperate marine ecosystems, macroalgae may be dominant, with a great percentage of their diversity represented by introduced species. Their interaction with temperate indigenous benthic organisms have been poorly investigated. To provide new insights, we performed an experimental study on the interaction between the introduced proliferative red alga Asparagopsis taxiformis and the indigenous Mediterranean coral Astroides calycularis. The biological response measurements included meta-barcoding of the associated microbial communities and metabolomic fingerprinting of both species. Significant changes were detected among both associated microbial communities, the interspecific differences decreasing with stronger host interaction. No short term effects of the macroalga on the coral health, neither on its polyp activity or its metabolism, were detected. In contrast, the contact interaction with the coral induced a change in the macroalgal metabolomic fingerprint with a significant increase of its bioactivity against the marine bacteria Aliivibrio fischeri. This induction was related to the expression of bioactive metabolites located on the macroalgal surface, a phenomenon which might represent an immediate defensive response of the macroalga or an allelopathic offense against coral.ERA-NET Biome project "SEAPROLIF"; CNRS; Provence Alpes Cote d'Azur Region; TOTAL Fundation; Fundacao para a Ciencia e a Tecnologia (FCT) [Netbiome/0002/2011]; FCT fellowships [SFRH/BPD/63703/2009, SFRH/BPD/107878/2015]info:eu-repo/semantics/publishedVersio

    Direct quantification of dimethylsulfoniopropionate (DMSP) in marine micro- and macroalgae using HPLC or UPLC/MS

    No full text
    A simple method for the direct quantification of dimethylsulfinopropionate (DMSP) using HPLC or UPLC coupled to UV and/or MS detection is introduced. The protocol is applied for the determination of DMSP from marine micro- and macroalgae. The method is based on the derivatisation of DMSP using 1-pyrenyidiazomethane followed by reversed phase HPLC or UPLC separation. The detection limit is 590 nM, corresponding to 1 ng DMSP per injection. Using a combination of UV and MS detection the calibration curves were linear in the range of 2.93 mu M to 11.7 mM concentrations. We show that direct determination of DMSP is possible from macroalgal tissue and microalgal cultures if DMSP-lyase activity is suppressed during work-up. (c) 2007 Elsevier B.V. All rights reserved

    No evidence for the induction of brown algal chemical defense by the phytohormones jasmonic acid and methyl jasmonate

    No full text
    Induced chemical defense reactions are widespread in marine brown algae. Despite the evidence that the biosynthesis of defense metabolites can be up-regulated upon herbivory, we do not know how this regulation of biosynthetic pathways to secondary metabolites is achieved in brown algae. In higher plants, the phytohormone jasmonic acid (JA) is crucial for the mediation of induced chemical defenses, and several findings of this metabolite from marine sources have been reported. We tested the hypothesis that JA or related metabolites play a role in induced brown algal defense. Quantification of oxylipins with a detection limit around 20 ng g-1 algal tissue did not reveal the presence of JA in the seven examined brown algal species Dictyota dichotoma, Colpomenia peregrina, Ectocarpus fasciculatus, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima (formerly Laminaria saccharina), and Sargassum muticum. Moreover, treatment with ecologically relevant concentrations of JA and methyl jasmonate did not lead to a significant change in the profile of medium- and non-polar metabolites of the tested algae. Only when high concentrations of >= 500 mu g ml-1 medium of the phytohormones were applied that a metabolic response which could be attributed to unspecific stress was observed. Bioassays with D. dichotoma that focused on medium- and non-polar compounds confirmed the lack of a biological role of JA and methyl jasmonate in the induction of algal induced chemical defenses. The phytohormone-treated samples did not exhibit any increased defense potential towards the amphipod Ampithoe longimana and the isopod Paracerceis caudata. JA and related phytohormones, known to be active in higher plants, thus appear to play no role in brown algae for induction of the defense chemicals studied here

    The potential role of wound-activated volatile release in the chemical defence of the brown alga Dictyota dichotoma: Blend recognition by marine herbivores

    No full text
    The chemical defence potential against herbivores of certain Dictyotalean brown algae increases after tissue disruption. This wound activated defence has been explored in bioassays, but the metabolic pathways behind it are unknown. Here we describe a metabolic profiling approach to identify the activated defence metabolites. Before and after tissue damage of Dictyota dichotoma modified diterpenes, non-volatile medium polar metabolites as well as volatile compounds were profiled. While comparison of extracted intact and mechanically wounded algae revealed no significant differences in structure and distribution of semi-volatile and reversed phase LC/MS detectable metabolites, a strong release of gaseous volatiles was observed. Solid phase micro extraction (SPME) and GC/MS were used for identification and quantification of these biogenic gases. This showed that D. dichotoma released elevated amounts of trimethylamine (TMA) and dimethylsulphide (DMS) after mechanical tissue damage. To study the ecological significance of compounds released post injury and of the biosynthetically connected non-volatile acrylate, choice assays were performed with the amphipod Amphithoe longimana. Behavioural assays on artificial diets did not reveal any repellent role for the single isolated metabolites. In strong contrast, a mixture of TMA, DMS and acrylate significantly reduced the association of the herbivores with the treated food pellets. This shows that mixtures of these biogenic gases and acrylate are recognized by the herbivores and influence food selection

    Reduction of herbivory through wound-activated protein cross-linking by the invasive macroalga Caulerpa taxifolia

    No full text
    aldehydes chemical defense food quality protein cross-linking protein modification

    Phospholipases and galactolipases trigger an oxylipin-mediated wound activated defense of the red alga Gracilaria chilensis against ephiphytes

    No full text
    We investigated the wound response of the commercially important red alga, Gracilaria chilensis, in order to obtain insight into its interaction with epiphytic pests. After wounding, the host releases free fatty acids as well as the hydroxylated eicosanoids, 8R-hydroxy eicosatetraenoic acid (8-HETE) and 7S,8R-dihydroxy eicosatetraenoic acid (7,8-di-HETE). While the release of free arachidonic acid and subsequent formation of 8-HETE is controlled by phospholipase A, 7,8-di-HETE production is independent of this lipase. This dihydroxylated fatty acid might be directly released from galactolipids. Physiologically relevant concentrations of oxylipins reduced spore settlement of Acrochaetium sp. (Rhodophyta, Acrochaetiaceae) and suppressed the development of hapteria in Ceramium rubrum (Rhodophyta, Ceramiaceae) when these model epiphytes were exposed to artificial surfaces that contained 8-HETE or 7,8-di-HETE. Thus, the immediate release of oxylipins can be seen as G. chilensis defence against epiphytes
    corecore