2,080 research outputs found

    A multi-sensor analysis of Nimbus 5 data on 22 January 1973

    Get PDF
    The Nimbus 5 meteorological satellite carried aloft a full complement of radiation sensors, the data from which were analyzed and intercompared during orbits 569-570 on 22 January 1973. The electrically scanning microwave radiometer (ESMR) which sensed passive microwave radiation in the 19.35 GHz region, delineated rain areas over the ocean off the U.S. east coast, in good agreement with WSR-57 and FPS-77 radar imagery and permitted the estimation of rainfall rates in this region. Residual ground water in the lower Mississippi Valley, which resulted from abnormal rainfall in previous months, was indicated under clear sky conditions by soil brightness temperature values in the Nimbus 5 ESMR and U.S. Air Force Data Acquisition and Processing Program (DAPP) IR data. The temperature-humidity infrared radiometer showed the height and spatial configuration of frontal clouds along the east coast and outlined the confluence of a polar jet stream with a broad sub-tropical jet stream along the U.S. Gulf Coast. Temperature profiles from three vertical temperature sounders, the infrared temperature profile radiometer (ITPR), the Nimbus E microwave spectrometer (NEMS) and the selective chopper radiometer (SCR) were found to be in good agreement with related radiosonde ascents along orbit 569 from the sub-tropics to the Arctic Circle

    A multisensor analysis of Nimbus-5 data recorded on 22 January 1973

    Get PDF
    The Nimbus 5 meteorological satellite has a full complement of radiation sensors. Data from these sensors were analyzed and intercompared for orbits 569 and 570. The electrically-scanning microwave radiometer (19.35-GHz region) delineated rain areas over the ocean off the U.S. east coast, in good agreement with radar imagery, and permitted the estimation of rainfall rates in this region. Residual ground water, from abnormal rainfall in the lower Mississippi Valley, was indicated under clear sky conditions by soil brightness temperature values in the Nimbus 5 electrically scanning microwave radiometer and U.S. Air Force Data Acquisition and Processing Program infrared data. The temperature-humidity infrared radiometer (6.7 micron and 11 micron) showed the height and spatial configuration of frontal clouds along the east coast and outlined the confluence of a polar jet stream with a broad subtropical jet stream along the U.S. Gulf Coast. Temperature profiles from three vertical temperature sounders are found to be in good agreement with related radiosonde ascents along orbit 569 from the subtropics to the Arctic Circle

    Neutral Collective Excitations in Striped Hall States

    Full text link
    In the striped Hall state, a magnetic translation in one direction is spontaneously broken to the discrete translation. The spectrum of the neutral collective excitation is obtained in the single mode approximation at half-filled third and fourth Landau levels. The spectrum is anisotropic and has a multiple line node structure. In one direction, the spectrum resembles the liquid Helium spectrum with the phonon and roton minimum.Comment: 2 pages, 2 figures, LT23 Hiroshim

    Hypernetted-chain study of broken rotational symmetry states for the ν\bm{\nu} = 1/3 fractional quantum Hall effect and other fractionally filled Landau levels

    Get PDF
    We investigate broken rotational symmetry (BRS) states for the fractional quantum Hall effect (FQHE) at 1/3-filling of the valence Landau level (LL). Recent Monte Carlo calculations by Musaelian and Joynt [J. Phys.: Condens.\ Matter {\bf 8}, L105 (1996)] suggest that Laughlin's state becomes unstable to a BRS state for some critical finite thickness value. We study in detail the properties of such state by performing a hypernetted-chain calculation that gives results in the thermodynamic limit, complementing other methods which are limited to a finite number of particles. Our results indicate that while Laughlin's state is stable in the lowest LL, in higher LLs a BRS instability occurs, perhaps indicating the absence of FQHE at partial fillings of higher LLs. Possible connections to the newly discovered liquid crystalline phases in higher LLs are also discussed.Comment: 7 pages including 3 eps figure

    Ballistic and Diffuse Electron Transport in Nanocontacts of Magnetics

    Full text link
    The transition from the ballistic electron transport to the diffuse one is experimentally observed in the study of the magnetic phase transition in Ni nanocontacts with different sizes. It is shown that the voltage UCU_C needed for Joule heating of the near-contact region to the critical temperature does not depend on the contact size only in the diffuse mode. For the ballistic contact it increases with decrease in the nanocontact size. The reduction of the transport electron mean free path due to heating of NCs may result in change of the electron transport mode from ballistic to diffusive one.Comment: 7 pages, 2 figures accepted for the publication in JETPL (http://www.jetpletters.ac.ru). Will be published on 25 april 201

    The BCS-like gap in superconductor SmFeAsO_0.85F_0.15

    Full text link
    Since the discovery of superconductivity in the cuprates two decades ago, it has been firmly established that the CuO_2 plane is consequential for high T_C superconductivity and a host of other very unusual properties. A new family of superconductors with the general composition of LaFeAsO_(1-x)F_x has recently been discovered but with the conspicuous lacking of the CuO_2 planes, thus raising the tantalizing questions of the different pairing mechanisms in these oxypnictide superconductors. Intimately related to pairing in a superconductor are the superconducting gap, its value, structure, and temperature dependence. Here we report the observation of a single gap in the superconductor SmFeAsO_0.85F_0.15 with T_C = 42 K as measured by Andreev spectroscopy. The gap value of 2Delta = 13.34+/-0.3 meV gives 2Delta/k_BT_C = 3.68, close to the BCS prediction of 3.53. The gap decreases with temperature and vanishes at T_C in a manner consistent with the Bardeen-Cooper-Schrieffer (BCS) prediction but dramatically different from that of the pseudogap behavior in the cuprate superconductors. Our results clearly indicate a nodeless gap order parameter, which is nearly isotropic in size across different sections of the Fermi surface, and are not compatible with models involving antiferromagnetic fluctuations, strong correlations, t-J model, and the like, originally designed for cuprates.Comment: 8 pages, 3 figure

    Atmospheric particulate matter characterization by Fourier transform infrared spectroscopy: a review of statistical calibration strategies for carbonaceous aerosol quantification in US measurement networks

    Get PDF
    Atmospheric particulate matter (PM) is a complex mixture of many different substances and requires a suite of instruments for chemical characterization. Fourier transform infrared (FT-IR) spectroscopy is a technique that can provide quantification of multiple species provided that accurate calibration models can be constructed to interpret the acquired spectra. In this capacity, FT-IR spectroscopy has enjoyed a long history in monitoring gas-phase constituents in the atmosphere and in stack emissions. However, application to PM poses a different set of challenges as the condensed-phase spectrum has broad, overlapping absorption peaks and contributions of scattering to the mid-infrared spectrum. Past approaches have used laboratory standards to build calibration models for prediction of inorganic substances or organic functional groups and predict their concentration in atmospheric PM mixtures by extrapolation. In this work, we review recent studies pursuing an alternate strategy, which is to build statistical calibration models for mid-IR spectra of PM using collocated ambient measurements. Focusing on calibrations with organic carbon (OC) and elemental carbon (EC) reported from thermal–optical reflectance (TOR), this synthesis serves to consolidate our knowledge for extending FT-IR spectroscopy to provide TOR-equivalent OC and EC measurements to new PM samples when TOR measurements are not available. We summarize methods for model specification, calibration sample selection, and model evaluation for these substances at several sites in two US national monitoring networks: seven sites in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network for the year 2011 and 10 sites in the Chemical Speciation Network (CSN) for the year 2013. We then describe application of the model in an operational context for the IMPROVE network for samples collected in 2013 at six of the same sites as in 2011 and 11 additional sites. In addition to extending the evaluation to samples from a different year and different sites, we describe strategies for error anticipation due to precision and biases from the calibration model to assess model applicability for new spectra a priori. We conclude with a discussion regarding past work and future strategies for recalibration. In addition to targeting numerical accuracy, we encourage model interpretation to facilitate understanding of the underlying structural composition related to operationally defined quantities of TOR OC and EC from the vibrational modes in mid-IR deemed most informative for calibration. The paper is structured such that the life cycle of a statistical calibration model for FT-IR spectroscopy can be envisioned for any substance with IR-active vibrational modes, and more generally for instruments requiring ambient calibrations.</p

    The Onset of Anisotropic Transport of Two-Dimensional Electrons in High Landau Levels: An Isotropic-to-Nematic Liquid Crystal Phase Transition?

    Get PDF
    The recently discovered anisotropy of the longitudinal resistance of two-dimensional electrons near half filling of high Landau levels is found to persist to much higher temperatures T when a large in-plane magnetic field B|| is applied. Under these conditions we find that the longitudinal resistivity scales quasi-linearly with B||/T. These observations support the notion that the onset of anisotropy at B||=0 does not reflect the spontaneous development of charge density modulations but may instead signal an isotropic-to-nematic liquid crystal phase transition.Comment: 5 pages, 4 figure
    • …
    corecore