295 research outputs found

    Effects of the bioturbating marine yabby Trypaea australiensis on sediment properties in sandy sediments receiving mangrove leaf litter

    Get PDF
    Laboratory mesocosm incubations were undertaken to investigate the influence of burrowing shrimp Trypaea australiensis (marine yabby) on sediment reworking, physical and chemical sediment characteristics and nutrients in sandy sediments receiving mangrove (Avicennia marina) leaf litter. Mesocosms of sieved, natural T. australiensis inhabited sands, were continually flushed with fresh seawater and pre-incubated for 17 days prior to triplicates being assigned to one of four treatments; sandy sediment (S), sediment + yabbies (S+Y), sediment + leaf litter (organic matter; S+OM) and sediment + yabbies + leaf litter (S+Y+OM) and maintained for 55 days. Mangrove leaf litter was added daily to treatments S+OM and S+Y+OM. Luminophores were added to mesocosms to quantify sediment reworking. Sediment samples were collected after the pre-incubation period from a set of triplicate mesocosms to establish initial conditions prior to the imposition of the treatments and from the treatment mesocosms at the conclusion of the 55-day incubation period. Yabbies demonstrated a clear effect on sediment topography and leaf litter burial through burrow creation and maintenance, creating mounds on the sediment surface ranging in diameter from 3.4 to 12 cm. Within S+Y+OM sediments leaf litter was consistently removed from the surface to sub-surface layers with only 7.5% ± 3.6% of the total mass of leaf detritus added to the mesocosms remaining at the surface at the end of the 55-day incubation period. Yabbies significantly decreased sediment wet-bulk density and increased porosity. Additionally, T. australiensis significantly reduced sediment bio-available ammonium (NH4+bio) concentrations and altered the shape of the concentration depth profile in comparison to the non-bioturbated mesocosms, indicating influences on nutrient cycling and sediment-water fluxes. No significant changes for mean apparent biodiffusion coefficients (Db) and mean biotransport coefficients (r), were found between the bioturbated S+Y and S+Y+OM mesocosms. The findings of this study provide further evidence that T. australiensis is a key-species in shallow intertidal systems playing an important role as an ‘ecosystem engineer’ in soft-bottom habitats by significantly altering physical and chemical structures and biogeochemical function

    Spin Correlation Coefficients in pp-->pnpi+ from 325 to 400 MeV

    Full text link
    The spin correlation coefficient combinations Axx + Ayy, Axx - Ayy and the analyzing powers Ay(theta) were measured for pp-->pnpi+ at beam energies of 325, 350, 375 and 400 MeV. A polarized internal atomic hydrogen target and a stored, polarized proton beam were used. These polarization observables are sensitive to contributions of higher partial waves. A comparison with recent theoretical calculations is provided.Comment: 8 Pages, 1 Table, 5 Figures. Accepted for publication in Phys. Lett.

    Intrinsic Climate Cooling

    Get PDF

    CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography

    Get PDF
    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track indi- vidual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs

    Probing the neutrino mass hierarchy and the 13-mixing with supernovae

    Get PDF
    We consider in details the effects of the 13-mixing (sin^2 theta_{13}) and of the type of mass hierarchy/ordering (sign[ Delta m^2_{13}]) on neutrino signals from the gravitational collapses of stars. The observables (characteristics of the energy spectra of nu_e and antinu_e events) sensitive to sin^2 theta_{13} and sign[Delta m^2_{13}] have been calculated. They include the ratio of average energies of the spectra, r_E = /, the ratio of widths of the energy distributions, r_Gamma, the ratios of total numbers of nu_e and antinu_e events at low energies, S, and in the high energy tails, R_{tail}. We construct and analyze scatter plots which show the predictions for the observables for different intervals of sin^2 theta_{13} and signs of Delta m^2_{13}, taking into account uncertainties in the original neutrino spectra, the star density profile, etc.. Regions in the space of observables r_E, r_Gamma, S, R_{tail} exist in which certain mass hierarchy and intervals of sin^2 theta_{13} can be identified or discriminated. We elaborate on the method of the high energy tails in the spectra of events. The conditions are formulated for which sin^2 theta_{13} can be (i) measured, (ii) restricted from below, (iii) restricted from above. We comment on the possibility to determine sin^2 theta_{13} using the time dependence of the signals due to the propagation of the shock wave through the resonance layers of the star. We show that the appearance of the delayed Earth matter effect in one of the channels (nu_e or antinu_e) in combination with the undelayed effect in the other channel will allow to identify the shock wave appeareance and determine the mass hierarchy.Comment: LaTeX, 56 pages, 12 figures; a few clarifications added; typos corrected. Version to appear in JCA

    Cosmogenic 11C production and sensitivity of organic scintillator detectors to pep and CNO neutrinos

    Full text link
    Several possible background sources determine the detectability of pep and CNO solar neutrinos in organic liquid scintillator detectors. Among such sources, the cosmogenic 11C nuclide plays a central role. 11C is produced underground in reactions induced by the residual cosmic muon flux. Experimental data available for the effective cross section for 11C by muons indicate that 11C will be the dominant source of background for the observation of pep and CNO neutrinos. 11C decays are expected to total a rate 2.5 (20) times higher than the combined rate of pep and CNO neutrinos in Borexino (KamLAND) in the energy window preferred for the pep measurement, between 0.8 and 1.3 MeV. This study examines the production mechanism of 11C by muon-induced showers in organic liquid scintillators with a novel approach: for the first time, we perform a detailed ab initio calculation of the production of a cosmogenic nuclide, 11C, taking into consideration all relevant production channels. Results of the calculation are compared with the effective cross sections measured by target experiments in muon beams. This paper also discusses a technique for reduction of background from 11C in organic liquid scintillator detectors, which allows to identify on a one-by-one basis and remove from the data set a large fraction of 11C decays. The background reduction technique hinges on an idea proposed by Martin Deutsch, who suggested that a neutron must be ejected in every interaction producing a 11C nuclide from 12C. 11C events are tagged by a three-fold coincidence with the parent muon track and the subsequent neutron capture on protons.Comment: 11 pages, 6 figures; added one section detailing comparison with previous estimates; added reference

    OPTIma:a tracking solution for proton computed tomography in high proton flux environments

    Get PDF
    Currently there is a large discrepancy between the currents that are used for treatments in proton beam therapy facilities and the ultra low beam currents required for many proton CT imaging systems. Here we provide details of the OPTIma silicon strip based tracking system, which has been designed for performing proton CT imaging in conditions closer to the high proton flux environments of modern spot scanning treatment facilities. Details on the physical design, sensor testing, modelling, and track reconstruction are provided along with Monte-Carlo simulation studies of the expected performance for proton beam currents of up to 50 pA at the nozzle when using a σ= ∌10 mm spot scanning cyclotron system. Using a detailed simulation of the proposed OPTIma system, a discrepancy of less than 1% on the Relative Stopping Power is found for various tissues when embedded within a 150 mm diameter Perspex sphere. It is found that by accepting up to 7 protons per bunch it is possible to operate at cyclotron beam currents up to 5 times higher than would be possible with a single proton based readout, significantly reducing the total beam time required to produce an image, while also reducing the discrepancy between the beam currents required for treatment and those used for proton CT

    The scattering of muons in low Z materials

    Full text link
    This paper presents the measurement of the scattering of 172 MeV/c muons in assorted materials, including liquid hydrogen, motivated by the need to understand ionisation cooling for muon acceleration. Data are compared with predictions from the Geant 4 simulation code and this simulation is used to deconvolute detector effects. The scattering distributions obtained are compared with the Moliere theory of multiple scattering and, in the case of liquid hydrogen, with ELMS. With the exception of ELMS, none of the models are found to provide a good description of the data. The results suggest that ionisation cooling will work better than would be predicted by Geant 4.7.0p01.Comment: pdfeTeX V 3.141592-1.21a-2.2, 30 pages with 22 figure

    Tritium Beta Decay, Neutrino Mass Matrices and Interactions Beyond the Standard Model

    Get PDF
    The interference of charge-changing interactions, weaker than the V-A Standard Model (SM) interaction and having a different Lorentz structure, with that SM interaction, can, in principle, produce effects near the end point of the Tritium beta decay spectrum which are of a different character from those produced by the purely kinematic effect of neutrino mass expected in the simplest extension of the SM. We show that the existence of more than one mass eigenstate can lead to interference effects at the end point that are stronger than those occurring over the entire spectrum. We discuss these effects both for the special case of Dirac neutrinos and the more general case of Majorana neutrinos and show that, for the present precision of the experiments, one formula should suffice to express the interference effects in all cases. Implications for "sterile" neutrinos are noted.Comment: 32 pages, LaTeX, 6 figures, PostScript; full discussion and changes in notation from Phys. Lett. B440 (1998) 89, nucl-th/9807057; submitted to Phys. Rev.
    • 

    corecore