25 research outputs found
Sympathetic Cooling of Mixed Species Two-Ion Crystals for Precision Spectroscopy
Sympathetic cooling of trapped ions has become an indispensable tool for
quantum information processing and precision spectroscopy. In the simplest
situation a single Doppler-cooled ion sympathetically cools another ion which
typically has a different mass. We analytically investigate the effect of the
mass ratio of such an ion crystal on the achievable temperature limit in the
presence of external heating. As an example, we show that cooling of a single
Al+ with Be+, Mg+ and Ca+ ions provides similar results for heating rates
typically observed in ion traps, whereas cooling ions with a larger mass
perform worse. Furthermore, we present numerical simulation results of the
rethermalisation dynamics after a background gas collision for the Al+/Ca+
crystal for different cooling laser configurations.Comment: Made Graphics black & white print compatible, clarified abstract and
summar
Long-distance remote comparison of ultrastable optical frequencies with 1e-15 instability in fractions of a second
We demonstrate a fully optical, long-distance remote comparison of
independent ultrastable optical frequencies reaching a short term stability
that is superior to any reported remote comparison of optical frequencies. We
use two ultrastable lasers, which are separated by a geographical distance of
more than 50 km, and compare them via a 73 km long phase-stabilized fiber in a
commercial telecommunication network. The remote characterization spans more
than one optical octave and reaches a fractional frequency instability between
the independent ultrastable laser systems of 3e-15 in 0.1 s. The achieved
performance at 100 ms represents an improvement by one order of magnitude to
any previously reported remote comparison of optical frequencies and enables
future remote dissemination of the stability of 100 mHz linewidth lasers within
seconds.Comment: 7 pages, 4 figure
Remote frequency measurement of the 1S0-3P1 transition in laser cooled Mg-24
We perform Ramsey-Bord\'e spectroscopy on laser-cooled magnesium atoms in
free fall to measure the 1S0 \rightarrow 3P1 intercombination transition
frequency. The measured value of 655 659 923 839 730 (48) Hz is consistent with
our former atomic beam measurement (Friebe et al 2008 Phys. Rev. A 78 033830).
We improve upon the fractional accuracy of the previous measurement by more
than an order of magnitude to 7e-14. The magnesium frequency standard was
referenced to a fountain clock of the Physikalisch-Technische Bundesanstalt
(PTB) via a phase-stabilized telecom fiber link and its stability was
characterized for interrogation times up to 8000 s. The high temperature of the
atomic ensemble leads to a systematic shift due to the motion of atoms across
the spectroscopy beams. In our regime, this leads to a counterintuitive
reduction of residual Doppler shift with increasing resolution. Our theoretical
model of the atom-light interaction is in agreement with the observed effect
and allows us to quantify its contribution in the uncertainty budget.Comment: 16 pages, 8 figures. Accepted in New Journal of Physic
Mutual Validation of GNSS Height Measurements and High-precision Geometric-astronomical Leveling
The method of geometric-astronomical leveling is presented as a suited technique for the validation of GNSS (Global Navigation Satellite System) heights. In geometric-astronomical leveling, the ellipsoidal height differences are obtained by combining conventional spirit leveling and astronomical leveling. Astronomical leveling with recently developed digital zenith camera systems is capable of providing the geometry of equipotential surfaces of the gravity field accurate to a few 0.1 mm per km. This is comparable to the accuracy of spirit leveling. Consequently, geometric-astronomical leveling yields accurate ellipsoidal height differences that may serve as an independent check on GNSS height measurements at local scales. A test was performed in a local geodetic network near Hanover. GPS observations were simultaneously carried out at five stations over a time span of 48 h and processed considering state-of-the-art techniques and sophisticated new approaches to reduce station-dependent errors. The comparison of GPS height differences with those from geometric-astronomical leveling shows a promising agreement of some millimeters. The experiment indicates the currently achievable accuracy level of GPS height measurements and demonstrates the practical applicability of the proposed approach for the validation of GNSS height measurements as well as the evaluation of GNSS height processing strategies