27 research outputs found

    Cisgenesis and intragenesis as new strategies for crop improvement

    Get PDF
    Cisgenesis and intragenesis are emerging plant breeding technologies which offer great promise for future acceptance of genetically engineered crops. The techniques employ traditional genetic engineering methods but are confined to transferring of genes and genetic elements between sexually compatible species that can breed naturally. One of the main requirements is the absence of selectable marker genes (such as antibiotic resistance genes) in the genome. Hence the sensitive issues with regard to transfer of foreign genes and antibiotic resistance are overcome. It is a targeted technique involving specific locus; therefore, linkage drag that prolongs the time for crop improvement in traditional breeding does not occur. It has great potential for crop improvement using superior alleles that exist in the untapped germplasm or wild species. Cisgenic and intragenic plants may not face the same stringent regulatory assessment for field release as transgenic plants which is a clear added advantage that would save time. In this chapter, the concepts of cis/intragenesis and the prerequisites for the development of cis/intragenesis plants are elaborated. Strategies for marker gene removal after selection of transformants are discussed based on the few recent reports from various plant species

    Is biotechnology (more) acceptable when it enables a reduction in phytosanitary treatments? A European comparison of the acceptability of transgenesis and cisgenesis

    Get PDF
    Reduced pesticide use is one of the reasons given by Europeans for accepting new genetic engineering techniques. According to the advocates of these techniques, consumers are likely to embrace the application of cisgenesis to apple trees. In order to verify the acceptability of these techniques, we estimate a Bayesian multilevel structural equation model, which takes into account the multidimensional nature of acceptability and individual, national, and European effects, using data from the Eurobarometer 2010 73.1 on science. The results underline the persistence of clear differences between European countries and whilst showing considerable defiance, a relatively wider acceptability of vertical gene transfer as a means of reducing phytosanitary treatments, compared to horizontal transfer

    Armillaria root rot on highbush blueberry in northern Italy: monitoring, identification and inoculum sources

    No full text
    Highbush blueberry plants infected by Armillaria spp. were reported in north-eastern Italy (Province of Trento). After inspection, 13 blueberry orchards were found to be infected in the Valsugana valley. Armillaria sp. samples were collected from blueberry plants, from bark spread on the blueberry rows and from infected trees and stumps in the orchard surroundings. The species determination was performed using a species-specific multiplex PCR approach. Efficacy trials with potential biocontrol agents against Armillaria sp. were carried out on young blueberry plants. The average percentage of stunted plants in the infected fields was 11%, while the percentage of dead plants was generally very low (average of 1.5%). The most frequent species infecting blueberries were A. gallica and A. mellea: in each field one species largely dominated the other. The tested Trichoderma strains, especially T. atroviride SC1, were the most effective biocontrol agents against A. gallica and A. mellea

    The development of a cisgenic apple plant

    No full text
    Cisgenesis represents a step toward a new generation of GM crops. The lack of selectable genes (e.g. antibiotic or herbicide resistance) in the final product and the fact that the inserted gene(s) derive from organisms sexually compatible with the target crop should rise less environmental concerns and increase consumer's acceptance. Here we report the generation of a cisgenic apple plant by inserting the endogenous apple scab resistance gene HcrVf2 under the control of its own regulatory sequences into the scab susceptible apple cultivar Gala. A previously developed method based on Agrobacterium-mediated transformation combined with a positive and negative selection system and a chemically inducible recombination machinery allowed the generation of apple cv. Gala carrying the scab resistance gene HcrVf2 under its native regulatory sequences and no foreign genes. Three cisgenic lines were chosen for detailed investigation and were shown to carry a single T-DNA insertion and express the target gene HcrVf2. This is the first report of the generation of a true cisgenic plan

    Cisgenic Approach for improved disease resistance in apple

    No full text
    Swiss and more generally European apple (Malus × domestica) production is hampered by several diseases, the most destructive being fire blight, caused by Erwinia amylovora. On the other hand, there are apple scab, caused by Venturia inaequalis and powdery mildew, caused by Podosphaera leucotricha, which represent the major phytosanitary problems. Classical breeding has produced many scab and mildew resistant cultivars and efforts to breed also fire blight resistant cultivars are currently undertaken. Marker assisted selection (MAS) increases efficiency by allowing early non-destructive screening of seedlings and identifying genotypes showing pyramids of resistance genes. If the development of markers for MAS was the primary goal of genetic analysis in the 1990s, identification and cloning of resistance genes is now the goal. The first and until now the sole resistance gene which has been isolated and transformed into a susceptible apple cultivar is the gene HcrVf2 (Rvi6), responsible for the Vf scab resistance present in most classically bred scab resistant cultivars. Much effort is currently spent in the identification and positional cloning of other apple genes conferring resistance to apple scab and fire blight. In our labs, we identified the putative scab resistance gene Rvi15 and two fire blight resistance genes namely from ‘Evereste’ and Malus × robusta 5. The functionality of these candidate genes is currently under scrutiny by complementation experiments. However, the final goal is the creation of a product, e.g., an improved apple cultivar that is resistant to scab and fire blight. The ideal product would have advantages to the environment and producer, and should raise as little concern as possible with consumers. To accomplish this ‘ideal product’, we opted for the cisgenic approach by introducing the scab resistance gene HcrVf2 with its own regulatory sequences into the highly susceptible apple cultivar, ‘Gala’, through Agrobacterium transformation. All marker genes were eliminated after transformation. Similarly, we are currently introducing into both the readily developed cisgenic ‘Gala’ and in the untransformed ‘Gala’ the putative Malus own fire blight resistance gene candidates, aiming at both proof of functionality of the identified candidates and possibly at rapid development of a fire blight and scab resistant cisgenic apple
    corecore