46 research outputs found

    What Point-of-Use Water Treatment Products Do Consumers Use? Evidence from a Randomized Controlled Trial among the Urban Poor in Bangladesh

    Get PDF
    BACKGROUND: There is evidence that household point-of-use (POU) water treatment products can reduce the enormous burden of water-borne illness. Nevertheless, adoption among the global poor is very low, and little evidence exists on why. METHODS: We gave 600 households in poor communities in Dhaka, Bangladesh randomly-ordered two-month free trials of four water treatment products: dilute liquid chlorine (sodium hypochlorite solution, marketed locally as Water Guard), sodium dichloroisocyanurate tablets (branded as Aquatabs), a combined flocculant-disinfectant powdered mixture (the PUR Purifier of Water), and a silver-coated ceramic siphon filter. Consumers also received education on the dangers of untreated drinking water. We measured which products consumers used with self-reports, observation (for the filter), and chlorine tests (for the other products). We also measured drinking water's contamination with E. coli (compared to 200 control households). FINDINGS: Households reported highest usage of the filter, although no product had even 30% usage. E. coli concentrations in stored drinking water were generally lowest when households had Water Guard. Households that self-reported product usage had large reductions in E. coli concentrations with any product as compared to controls. CONCLUSION: Traditional arguments for the low adoption of POU products focus on affordability, consumers' lack of information about germs and the dangers of unsafe water, and specific products not meshing with a household's preferences. In this study we provided free trials, repeated informational messages explaining the dangers of untreated water, and a variety of product designs. The low usage of all products despite such efforts makes clear that important barriers exist beyond cost, information, and variation among these four product designs. Without a better understanding of the choices and aspirations of the target end-users, household-based water treatment is unlikely to reduce morbidity and mortality substantially in urban Bangladesh and similar populations

    Inactivation and sub-lethal injury of salmonella typhi, salmonella typhimurium and vibrio cholerae in copper water storage vessels

    Get PDF
    Background: This study provides information on the antibacterial effect of copper against the water-borne pathogens Salmonella Typhi, Salmonella Typhimurium and Vibrio cholerae. Methods: Suspensions of each pathogen were kept in water within a traditional copper vessel at 30°C for 24 h. Samples were withdrawn, diluted and plated onto suitable growth media. Conventional enumeration of healthy (uninjured) bacteria was carried out using standard aerobic incubation conditions. Additionally, reactive oxygen species-neutralised (ROS-n) conditions were achieved by adding the peroxide scavenger sodium pyruvate to the medium with anaerobic incubation, to enumerate uninjured (ROS-insensitive) and injured (ROS-sensitive) bacteria. Differences between log-transformed means of conventional (aerobic) and ROS-n counts were statistically evaluated using t tests. Results: Overall, all three pathogens were inactivated by storage in copper vessels for 24 h. However, for shorter-term incubation (4-12 h), higher counts were observed under ROS-n conditions than under aerobic conditions, which demonstrate the presence of substantial numbers of sub-lethally injured cells prior to their complete inactivation. Conclusions: The present study has for the first time confirmed that these bacterial pathogens are inactivated by storage in a copper vessel within 24 h. However, it has also demonstrated that it is necessary to account for short-term sub-lethal injury, manifest as ROS-sensitivity, in order to more fully understand the process. This has important practical implications in terms of the time required to store water within a copper vessel to completely inactivate these bacteria and thereby remove the risk of water-borne disease transmission by this route

    Vitalism in contemporary chiropractic: a help or a hinderance?

    Get PDF
    Background: Chiropractic emerged in 1895 and was promoted as a viable health care substitute in direct competition with the medical profession. This was an era when there was a belief that one cause and one cure for all disease would be discovered. The chiropractic version was a theory that most diseases were caused by subluxated (slightly displaced) vertebrae interfering with “nerve vibrations” (a supernatural, vital force) and could be cured by adjusting (repositioning) vertebrae, thereby removing the interference with the body’s inherent capacity to heal. DD Palmer, the originator of chiropractic, established chiropractic based on vitalistic principles. Anecdotally, the authors have observed that many chiropractors who overtly claim to be “vitalists” cannot define the term. Therefore, we sought the origins of vitalism and to examine its effects on chiropractic today. Discussion: Vitalism arose out of human curiosity around the biggest questions: Where do we come from? What is life? For some, life was derived from an unknown and unknowable vital force. For others, a vital force was a placeholder, a piece of knowledge not yet grasped but attainable. Developments in science have demonstrated there is no longer a need to invoke vitalistic entities as either explanations or hypotheses for biological phenomena. Nevertheless, vitalism remains within chiropractic. In this examination of vitalism within chiropractic we explore the history of vitalism, vitalism within chiropractic and whether a vitalistic ideology is compatible with the legal and ethical requirements for registered health care professionals such as chiropractors. Conclusion: Vitalism has had many meanings throughout the centuries of recorded history. Though only vaguely defined by chiropractors, vitalism, as a representation of supernatural force and therefore an untestable hypothesis, sits at the heart of the divisions within chiropractic and acts as an impediment to chiropractic legitimacy, cultural authority and integration into mainstream health care

    Exploring UK medical school differences: the MedDifs study of selection, teaching, student and F1 perceptions, postgraduate outcomes and fitness to practise

    Get PDF
    BACKGROUND: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. METHOD: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g. PBL schools, spend per student, staff-student ratio), selection measures (e.g. entry grades), teaching and assessment (e.g. traditional vs PBL, specialty teaching, self-regulated learning), student satisfaction, Foundation selection scores, Foundation satisfaction, postgraduate examination performance and fitness to practise (postgraduate progression, GMC sanctions). Six specialties (General Practice, Psychiatry, Anaesthetics, Obstetrics and Gynaecology, Internal Medicine, Surgery) were examined in more detail. RESULTS: Medical school differences are stable across time (median alpha = 0.835). The 50 measures were highly correlated, 395 (32.2%) of 1225 correlations being significant with p < 0.05, and 201 (16.4%) reached a Tukey-adjusted criterion of p < 0.0025. Problem-based learning (PBL) schools differ on many measures, including lower performance on postgraduate assessments. While these are in part explained by lower entry grades, a surprising finding is that schools such as PBL schools which reported greater student satisfaction with feedback also showed lower performance at postgraduate examinations. More medical school teaching of psychiatry, surgery and anaesthetics did not result in more specialist trainees. Schools that taught more general practice did have more graduates entering GP training, but those graduates performed less well in MRCGP examinations, the negative correlation resulting from numbers of GP trainees and exam outcomes being affected both by non-traditional teaching and by greater historical production of GPs. Postgraduate exam outcomes were also higher in schools with more self-regulated learning, but lower in larger medical schools. A path model for 29 measures found a complex causal nexus, most measures causing or being caused by other measures. Postgraduate exam performance was influenced by earlier attainment, at entry to Foundation and entry to medical school (the so-called academic backbone), and by self-regulated learning. Foundation measures of satisfaction, including preparedness, had no subsequent influence on outcomes. Fitness to practise issues were more frequent in schools producing more male graduates and more GPs. CONCLUSIONS: Medical schools differ in large numbers of ways that are causally interconnected. Differences between schools in postgraduate examination performance, training problems and GMC sanctions have important implications for the quality of patient care and patient safety

    The Analysis of Teaching of Medical Schools (AToMS) survey: an analysis of 47,258 timetabled teaching events in 25 UK medical schools relating to timing, duration, teaching formats, teaching content, and problem-based learning

    Get PDF
    BACKGROUND: What subjects UK medical schools teach, what ways they teach subjects, and how much they teach those subjects is unclear. Whether teaching differences matter is a separate, important question. This study provides a detailed picture of timetabled undergraduate teaching activity at 25 UK medical schools, particularly in relation to problem-based learning (PBL). METHOD: The Analysis of Teaching of Medical Schools (AToMS) survey used detailed timetables provided by 25 schools with standard 5-year courses. Timetabled teaching events were coded in terms of course year, duration, teaching format, and teaching content. Ten schools used PBL. Teaching times from timetables were validated against two other studies that had assessed GP teaching and lecture, seminar, and tutorial times. RESULTS: A total of 47,258 timetabled teaching events in the academic year 2014/2015 were analysed, including SSCs (student-selected components) and elective studies. A typical UK medical student receives 3960 timetabled hours of teaching during their 5-year course. There was a clear difference between the initial 2 years which mostly contained basic medical science content and the later 3 years which mostly consisted of clinical teaching, although some clinical teaching occurs in the first 2 years. Medical schools differed in duration, format, and content of teaching. Two main factors underlay most of the variation between schools, Traditional vs PBL teaching and Structured vs Unstructured teaching. A curriculum map comparing medical schools was constructed using those factors. PBL schools differed on a number of measures, having more PBL teaching time, fewer lectures, more GP teaching, less surgery, less formal teaching of basic science, and more sessions with unspecified content. DISCUSSION: UK medical schools differ in both format and content of teaching. PBL and non-PBL schools clearly differ, albeit with substantial variation within groups, and overlap in the middle. The important question of whether differences in teaching matter in terms of outcomes is analysed in a companion study (MedDifs) which examines how teaching differences relate to university infrastructure, entry requirements, student perceptions, and outcomes in Foundation Programme and postgraduate training

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    The Analysis of Teaching of Medical Schools (AToMS) survey: an analysis of 47,258 timetabled teaching events in 25 UK medical schools relating to timing, duration, teaching formats, teaching content, and problem-based learning

    Get PDF
    Background What subjects UK medical schools teach, what ways they teach subjects, and how much they teach those subjects is unclear. Whether teaching differences matter is a separate, important question. This study provides a detailed picture of timetabled undergraduate teaching activity at 25 UK medical schools, particularly in relation to problem-based learning (PBL). Method The Analysis of Teaching of Medical Schools (AToMS) survey used detailed timetables provided by 25 schools with standard 5-year courses. Timetabled teaching events were coded in terms of course year, duration, teaching format, and teaching content. Ten schools used PBL. Teaching times from timetables were validated against two other studies that had assessed GP teaching and lecture, seminar, and tutorial times. Results A total of 47,258 timetabled teaching events in the academic year 2014/2015 were analysed, including SSCs (student-selected components) and elective studies. A typical UK medical student receives 3960 timetabled hours of teaching during their 5-year course. There was a clear difference between the initial 2 years which mostly contained basic medical science content and the later 3 years which mostly consisted of clinical teaching, although some clinical teaching occurs in the first 2 years. Medical schools differed in duration, format, and content of teaching. Two main factors underlay most of the variation between schools, Traditional vs PBL teaching and Structured vs Unstructured teaching. A curriculum map comparing medical schools was constructed using those factors. PBL schools differed on a number of measures, having more PBL teaching time, fewer lectures, more GP teaching, less surgery, less formal teaching of basic science, and more sessions with unspecified content. Discussion UK medical schools differ in both format and content of teaching. PBL and non-PBL schools clearly differ, albeit with substantial variation within groups, and overlap in the middle. The important question of whether differences in teaching matter in terms of outcomes is analysed in a companion study (MedDifs) which examines how teaching differences relate to university infrastructure, entry requirements, student perceptions, and outcomes in Foundation Programme and postgraduate training

    Exploring UK medical school differences: the MedDifs study of selection, teaching, student and F1 perceptions, postgraduate outcomes and fitness to practise.

    Get PDF
    BACKGROUND: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. METHOD: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g. PBL schools, spend per student, staff-student ratio), selection measures (e.g. entry grades), teaching and assessment (e.g. traditional vs PBL, specialty teaching, self-regulated learning), student satisfaction, Foundation selection scores, Foundation satisfaction, postgraduate examination performance and fitness to practise (postgraduate progression, GMC sanctions). Six specialties (General Practice, Psychiatry, Anaesthetics, Obstetrics and Gynaecology, Internal Medicine, Surgery) were examined in more detail. RESULTS: Medical school differences are stable across time (median alpha = 0.835). The 50 measures were highly correlated, 395 (32.2%) of 1225 correlations being significant with p < 0.05, and 201 (16.4%) reached a Tukey-adjusted criterion of p < 0.0025. Problem-based learning (PBL) schools differ on many measures, including lower performance on postgraduate assessments. While these are in part explained by lower entry grades, a surprising finding is that schools such as PBL schools which reported greater student satisfaction with feedback also showed lower performance at postgraduate examinations. More medical school teaching of psychiatry, surgery and anaesthetics did not result in more specialist trainees. Schools that taught more general practice did have more graduates entering GP training, but those graduates performed less well in MRCGP examinations, the negative correlation resulting from numbers of GP trainees and exam outcomes being affected both by non-traditional teaching and by greater historical production of GPs. Postgraduate exam outcomes were also higher in schools with more self-regulated learning, but lower in larger medical schools. A path model for 29 measures found a complex causal nexus, most measures causing or being caused by other measures. Postgraduate exam performance was influenced by earlier attainment, at entry to Foundation and entry to medical school (the so-called academic backbone), and by self-regulated learning. Foundation measures of satisfaction, including preparedness, had no subsequent influence on outcomes. Fitness to practise issues were more frequent in schools producing more male graduates and more GPs. CONCLUSIONS: Medical schools differ in large numbers of ways that are causally interconnected. Differences between schools in postgraduate examination performance, training problems and GMC sanctions have important implications for the quality of patient care and patient safety
    corecore