229 research outputs found

    The dynamics of the impact and coalescence of droplets on a solid surface.

    Get PDF
    A simple experimental setup to study the impact and coalescence of deposited droplets is described. Droplet impact and coalescence have been investigated by high-speed particle image velocimetry. Velocity fields near the liquid-substrate interface have been observed for the impact and coalescence of 2.4 mm diameter droplets of glycerol∕water striking a flat transparent substrate in air. The experimental arrangement images the internal flow in the droplets from below the substrate with a high-speed camera and continuous laser illumination. Experimental results are in the form of digital images that are processed by particle image velocimetry and image processing algorithms to obtain velocity fields, droplet geometries, and contact line positions. Experimental results are compared with numerical simulations by the lattice Boltzmann method

    Forearm muscle oxidative capacity index predicts sport rock-climbing performance

    Get PDF
    Abstract: Rock-climbing performance is largely dependent on the endurance of the forearm flexors. Recently, it was reported that forearm flexor endurance in elite climbers is independent of the ability to regulate conduit artery (brachial) blood flow, suggesting that endurance is not primarily dependent on the ability of the brachial artery to deliver oxygen, but rather the ability of the muscle to perfuse and use oxygen, i.e., skeletal muscle oxidative capacity. Purpose: The aim of the study was to determine whether an index of oxidative capacity in the flexor digitorum profundus (FDP) predicts the best sport climbing red-point grade within the last 6 months. Participants consisted of 46 sport climbers with a range of abilities. Methods: Using near-infrared spectroscopy, the oxidative capacity index of the FDP was assessed by calculating the half-time for tissue oxygen resaturation (O2HTR) following 3–5 min of ischemia. Results: Linear regression, adjusted for age, sex, BMI, and training experience, revealed a 1-s decrease in O2HTR was associated with an increase in red-point grade by 0.65 (95 % CI 0.35–0.94, Adj R2 = 0.53). Conclusions: Considering a grade of 0.4 separated the top four competitors in the 2015 International Federation Sport Climbing World Cup, this finding suggests that forearm flexor oxidative capacity index is an important determinant of rock-climbing performance

    Phospholipase C Isozymes Are Deregulated in Colorectal Cancer – Insights Gained from Gene Set Enrichment Analysis of the Transcriptome

    Get PDF
    Colorectal cancer (CRC) is one of the most common cancer types in developed countries. To identify molecular networks and biological processes that are deregulated in CRC compared to normal colonic mucosa, we applied Gene Set Enrichment Analysis to two independent transcriptome datasets, including a total of 137 CRC and ten normal colonic mucosa samples. Eighty-two gene sets as described by the Kyoto Encyclopedia of Genes and Genomes database had significantly altered gene expression in both datasets. These included networks associated with cell division, DNA maintenance, and metabolism. Among signaling pathways with known changes in key genes, the “Phosphatidylinositol signaling network”, comprising part of the PI3K pathway, was found deregulated. The downregulated genes in this pathway included several members of the Phospholipase C protein family, and the reduced expression of two of these, PLCD1 and PLCE1, were successfully validated in CRC biopsies (n = 70) and cell lines (n = 19) by quantitative analyses. The repression of both genes was found associated with KRAS mutations (P = 0.005 and 0.006, respectively), and we observed that microsatellite stable carcinomas with reduced PLCD1 expression more frequently had TP53 mutations (P = 0.002). Promoter methylation analyses of PLCD1 and PLCE1 performed in cell lines and tumor biopsies revealed that methylation of PLCD1 can contribute to reduced expression in 40% of the microsatellite instable carcinomas. In conclusion, we have identified significantly deregulated pathways in CRC, and validated repression of PLCD1 and PLCE1 expression. This illustrates that the GSEA approach may guide discovery of novel biomarkers in cancer

    OGA heterozygosity suppresses intestinal tumorigenesis in Apc min/+ mice

    Get PDF
    Emerging evidence suggests that aberrant O-GlcNAcylation is associated with tumorigenesis. Many oncogenic factors are O-GlcNAcylated, which modulates their functions. However, it remains unclear how O-GlcNAcylation and O-GlcNAc cycling enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), affect the development of cancer in animal models. In this study, we show that reduced level of OGA attenuates colorectal tumorigenesis induced by Adenomatous polyposis coli (Apc) mutation. The levels of O-GlcNAcylation and O-GlcNAc cycling enzymes were simultaneously upregulated in intestinal adenomas from mice, and in human patients. In two independent microarray data sets, the expression of OGA and OGT was significantly associated with poor cancer-specific survival of colorectal cancer (CRC) patients. In addition, OGA heterozygosity, which results in increased levels of O-GlcNAcylation, attenuated intestinal tumor formation in the Apc min/+ background. Apc min/+ OGA +/-mice exhibited a significantly increased survival rate compared with Apc min/+ mice. Consistent with this, Apc min/+ OGA +/-mice expressed lower levels of Wnt target genes than Apc min/+. However, the knockout of OGA did not affect Wnt/??-catenin signaling. Overall, these findings suggest that OGA is crucial for tumor growth in CRC independently of Wnt/??-catenin signaling.open2

    LGMD2I in a North American population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a marked variation in clinical phenotypes that have been associated with mutations in <it>FKRP</it>, ranging from severe congenital muscular dystrophies to limb-girdle muscular dystrophy type 2I (LGMD2I).</p> <p>Methods</p> <p>We screened the <it>FKRP </it>gene in two cohorts totaling 87 patients with the LGMD phenotype.</p> <p>Results</p> <p>The c.826C>A, p.L276I mutation was present in six patients and a compound heterozygote mutation in a seventh patient. Six patients had a mild LGMD2I phenotype, which resembles that of Becker muscular dystrophy. The other patient had onset before the age of 3 years, and thus may follow a more severe course.</p> <p>Conclusion</p> <p>These findings suggest that LGMD2I may be common in certain North American populations. This diagnosis should be considered early in the evaluation of LGMD.</p

    Colon cancer subtypes: Concordance, effect on survival and selection of the most representative preclinical models

    Get PDF
    Multiple gene-expression-based subtypes have been proposed for the molecular subdivision of colon cancer in the last decade. We aimed to cross-validate these classifiers to explore their concordance and their power to predict survival. A gene-chip-based database comprising 2,166 samples from 12 independent datasets was set up. A total of 22 different molecular subtypes were re-trained including the CCHS, CIN25, CMS, ColoGuideEx, ColoGuidePro, CRCassigner, MDA114, Meta163, ODXcolon, Oncodefender, TCA19, and V7RHS classifiers as well as subtypes established by Budinska, Chang, DeSousa, Marisa, Merlos, Popovici, Schetter, Yuen, and Watanabe (first authors). Correlation with survival was assessed by Cox proportional hazards regression for each classifier using relapse-free survival data. The highest efficacy at predicting survival in stage 2-3 patients was achieved by Yuen (p = 3.9e-05, HR = 2.9), Marisa (p = 2.6e-05, HR = 2.6) and Chang (p = 9e-09, HR = 2.35). Finally, 61 colon cancer cell lines from four independent studies were assigned to the closest molecular subtype. © 2016 The Author(s)

    Applying genetic technologies to combat infectious diseases in aquaculture

    Get PDF
    Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies—sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/ parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.publishedVersio
    corecore