127 research outputs found

    Injection of Positrons into a Dense Electron Cloud in a Magnetic Dipole Trap

    Full text link
    The creation of an electron space charge in a dipole magnetic trap and the subsequent injection of positrons has been experimentally demonstrated. Positrons (5eV) were magnetically guided from their source and injected into the trapping field generated by a permanent magnet (0.6T at the poles) using a cross field E ×\times B drift, requiring tailored electrostatic and magnetic fields. The electron cloud is created by thermionic emission from a tungsten filament. The maximum space charge potential of the electron cloud reaches -42V, which is consistent with an average electron density of (4±24 \pm 2) ×1012\times 10^{12} m−3\text{m}^{-3} and a Debye length of (2±12 \pm 1) cm\text{cm}. We demonstrate that the presence of this space potential does not hamper efficient positron injection. Understanding the effects of the negative space charge on the injection and confinement of positrons represents an important intermediate step towards the production of a confined electron-positron pair plasma

    Annihilation-Gamma-based Diagnostic Techniques for Magnetically Confined Electron-Positron Pair Plasma

    Full text link
    Efforts are underway to magnetically confine electron--positron pair plasmas to study their unique behavior, which is characterized by significant changes in plasma time and length scales, supported waves, and unstable modes. However, use of conventional plasma diagnostics presents challenges with these low-density and annihilating matter-antimatter plasma. To address this problem, we propose to develop techniques based on the distinct emission provided by annihilation. This emission exhibits two spatial correlations: the distance attenuation of isotropic sources and the back-to-back propagation of momentum-preserving 2-γ\gamma annihilation. We present the results of our analysis of the γ\gamma emission rate and the spatial profile of the annihilation in a magnetized pair plasma from direct pair collisions, from the formation and decay of positronium, as well as from transport processes. In order to demonstrate the effectiveness of annihilation-based techniques, we tested them on annular γ\gamma emission profiles produced by a β+\beta^+ radioisotope on a rotating turntable. Direct and positronium-mediated annihilation result in overlapping volumetric γ\gamma sources, and the 2-γ\gamma emission from these volumetric sources can be tomographically reconstructed from coincident counts in multiple detectors. Transport processes result in localized annihilation where field lines intersect walls, limiters, or internal magnets. These localized sources can be identified by the fractional γ\gamma counts on spatially distributed detectors.Comment: 21 pages, 11 figures, 2 tables, contribution to the 13th International Workshop on Non-Neutral Plasma

    Broadband Alfvénic excitation correlated to turbulence level in the Wendelstein 7-X stellarator plasmas

    Get PDF
    During the first operational phase (OP1) of the Wendelstein 7-X (W7-X) stellarator, poloidal magnetic field fluctuations, B˙θ\dot{B}_{\theta}, were measured in several different plasma scenarios with a system of Mirnov coils. In the spectrograms, multiple frequency bands close together in frequency are observed below f = 600 kHz. Furthermore, a dominant feature is the appearance of a frequency band with the highest spectral amplitude centred between f=180−220f = 180-220 kHz. The fluctuations are observed from the beginning of most W7-X plasmas of OP1, which were often operated solely with electron cyclotron resonance heating. The fluctuations show characteristics known from Alfvén waves and possibly Alfvén eigenmodes (AEs). However, the fast particle drive from heating sources, which is generally a driver necessary for the appearance of AEs in magnetic confinement plasmas, is absent in most of the analysed experiments. A characterization of the Alfvénic fluctuations measured during OP1 plasmas is possible using a newly developed tracking algorithm. In this paper, we extensively survey the different spectral properties of the fluctuations in correlation with plasma parameters and discuss possible driving mechanisms. The correlation studies of the dynamics of the possible ellipticity induced AEs indicate that Alfvén activity in the frequency interval between f=100−450f = 100-450 kHz could be excited due to an interaction with turbulence, or profile effects also affecting the turbulence amplitude

    Impurity temperatures measured via line shape analysis in the island scrape-off-layer of Wendelstein 7-X

    Get PDF
    Impurity temperatures have been determined by a spectroscopic line shape analysis for several species in the divertor scrape-off-layer of the stellarator Wendelstein 7-X (W7-X). Examples include spectral lines from intrinsic elements (C II and C III, He I) as well as from seeded impurities (Ar II, N II) through the divertor gas inlet system. Both Doppler broadening and Zeeman splitting are found to contribute significantly to the impurity line shapes. Zeeman splitting arises due to the confining magnetic field in W7-X and complicates the line shape appearance. By attributing Doppler widths to each of the various Zeeman components, however, we demonstrate that reliable ion temperature values can be derived provided that the presence of the magnetic field is properly accounted for. The spectrally highly resolved lines are analyzed by means of a multi-parameter, least-squares fit routine, which accounts for Doppler broadening, Zeeman splitting, as well as the instrumental broadening of the spectrometer used to measure the spectral line shapes. By spectral fitting of the Zeeman features, it is also found that the line shape analysis can yield values for the local magnetic field, which can be used to localize the impurity radiation approximately provided that the line emission is dominant in a small area intersected by the lines of sight of the spectrometer

    Diagnostics development for quasi-steady-state operation of the Wendelstein 7-X stellarator (invited)

    Get PDF
    The critical issues in the development of diagnostics, which need to work robust and reliable under quasi-steady state conditions for the discharge durations of 30 min and which cannot be maintained throughout the one week duration of each operation phase of the Wendelstein 7-X stellarator, are being discussed

    First divertor physics studies in Wendelstein 7-X

    Get PDF
    The Wendelstein 7-X (W7-X) optimized stellarator fusion experiment, which went into operation in 2015, has been operating since 2017 with an un-cooled modular graphite divertor. This allowed first divertor physics studies to be performed at pulse energies up to 80 MJ, as opposed to 4 MJ in the first operation phase, where five inboard limiters were installed instead of a divertor. This, and a number of other upgrades to the device capabilities, allowed extension into regimes of higher plasma density, heating power, and performance overall, e.g. setting a new stellarator world record triple product. The paper focuses on the first physics studies of how the island divertor works. The plasma heat loads arrive to a very high degree on the divertor plates, with only minor heat loads seen on other components, in particular baffle structures built in to aid neutral compression. The strike line shapes and locations change significantly from one magnetic configuration to another, in very much the same way that codes had predicted they would. Strike-line widths are as large as 10 cm, and the wetted areas also large, up to about 1.5 m(2), which bodes well for future operation phases. Peak local heat loads onto the divertor were in general benign and project below the 10 MW m(-2) limit of the future water-cooled divertor when operated with 10 MW of heating power, with the exception of low-density attached operation in the high-iota configuration. The most notable result was the complete (in all 10 divertor units) heat-flux detachment obtained at high-density operation in hydrogen
    • …
    corecore