23 research outputs found

    Phylogeny and phylogeography of rhizobial symbionts nodulating legumes of the tribe Genisteae

    Get PDF
    The legume tribe Genisteae comprises 618, predominantly temperate species, showing an amphi-Atlantic distribution that was caused by several long-distance dispersal events. Seven out of the 16 authenticated rhizobial genera can nodulate particular Genisteae species. Bradyrhizobium predominates among rhizobia nodulating Genisteae legumes. Bradyrhizobium strains that infect Genisteae species belong to both the Bradyrhizobium japonicum and Bradyrhizobium elkanii superclades. In symbiotic gene phylogenies, Genisteae bradyrhizobia are scattered among several distinct clades, comprising strains that originate from phylogenetically distant legumes. This indicates that the capacity for nodulation of Genisteae spp. has evolved independently in various symbiotic gene clades, and that it has not been a long-multi-step process. The exception is Bradyrhizobium Clade II, which unlike other clades comprises strains that are specialized in nodulation of Genisteae, but also Loteae spp. Presumably, Clade II represents an example of long-lasting co-evolution of bradyrhizobial symbionts with their legume hosts

    Heavy Ion Beams for Radiobiology: Dosimetry and Nanodosimetry at HIL

    No full text
    Ionizing radiation induces a variety of DNA lesions, including single and double strand breaks. Large energy deposition precisely localized along the ion track that occurs in the case of heavy ion irradiation can lead to complex types of DNA double strand breaks in exposed biological material. The formation of nuclear double strand breaks triggers phosphorylation of histone H2AX, which can be microscopically visualized as foci in the γ-H2AX assay. Studies with a carbon ion beam are being carried out at the Heavy Ion Laboratory of the University of Warsaw. The γ-H2AX assay as a method of measuring the biological response of cells irradiated with 12C\text{}^{12}C ions as well as the frequency cluster size distributions obtained in the nanodosimetry experiment at HIL will be presented

    Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia

    No full text
    Background and aims: Legumes of the genus Lessertia have recently been introduced to Australia in an attempt to increase the range of forage species available in Australian farming systems capable of dealing with a changing climate. This study assessed the diversity and the nodulation ability of a collection of Lessertia root nodule bacteria isolated from different agro-climatic areas of the Eastern and Western Capes of South Africa. Methods: The diversity and phylogeny of 43 strains was determined via the partial sequencing of the dnaK, 16srRNA and nodA genes. A glasshouse experiment was undertaken to evaluate symbiotic relationships between six Lessertia species and 17 rhizobia strains. Results: The dnaK and 16S rRNA genes of the majority of the strains clustered with the genus Mesorhizobium. The position of the strains at the intra-genus level was incongruent between phylogenies with few exceptions. The nodA genes from Lessertia spp. formed a cluster on their own, separate from the previously known Mesorhizobium nodA sequences. Strains showed differences in their nodulation and nitrogen fixation patterns that could be correlated with nodA gene phylogeny. L. diffusa, L. herbacea and L. excisa nodulated with nearly all the strains examined while L. capitata, L. incana and L. pauciflora were more stringent. Conclusion: Root nodule bacteria from Lessertia spp. were identified mainly as Mesorhizobium spp. Their nodA genes were unique and correlated with the nodulation and nitrogen fixation patterns of the strains. There were marked differences in promiscuity within Lessertia spp. and within strains of root nodule bacteria
    corecore