84 research outputs found
Phases of Bosons or Fermions in confined optical lattices
Phases of Bose or Fermi atoms in optical lattices confined in harmonic traps
are studied within the Thomas-Fermi approximation. Critical radii and particle
number for onset of Mott insulator states are calculated and phase diagrams
shown in 1D, and estimated for 2 and 3D. Methods to observe these and novel
phases such as d-wave superconductivity is discussed. Specifically the
collective modes are calculated.Comment: Revised and extended. To appear in PR
Confinement induced molecules in a 1D Fermi gas
We have observed two-particle bound states of atoms confined in a
one-dimensional matter wave guide. These bound states exist irrespective of the
sign of the scattering length, contrary to the situation in free space. Using
radio-frequency spectroscopy we have measured the binding energy of these
dimers as a function of the scattering length and confinement and find good
agreement with theory. The strongly interacting one-dimensional Fermi gas which
we create in an optical lattice represents a realization of a tunable Luttinger
liquid.Comment: 4 page
1D Bose Gases in an Optical Lattice
We report on the study of the momentum distribution of a one-dimensional Bose
gas in an optical lattice. From the momentum distribution we extract the
condensed fraction of the gas and thereby measure the depletion of the
condensate and compare it with a theorical estimate. We have measured the
coherence length of the gas for systems with average occupation and
per lattice site.Comment: 4 pages, 3 figure
1D Bose gases in an optical lattice
We report on the study of the momentum distribution of a one-dimensional Bose gas in an optical lattice. From the momentum distribution we extract the condensed fraction of the gas and thereby measure the depletion of the condensate and compare it with a theoretical estimate. We have measured the coherence length of the gas for systems with average occupation n̄>1 and n̄<1 per lattice sit
A scanning microcavity for in-situ control of single-molecule emission
We report on the fabrication and characterization of a scannable Fabry-Perot
microcavity, consisting of a curved micromirror at the end of an optical fiber
and a planar distributed Bragg reflector. Furthermore, we demonstrate the
coupling of single organic molecules embedded in a thin film to well-defined
resonator modes. We discuss the choice of cavity parameters that will allow
sufficiently high Purcell factors for enhancing the zero-phonon transition
between the vibrational ground levels of the electronic excited and ground
states.Comment: 8 page
Repulsively bound atom pairs in an optical lattice
Throughout physics, stable composite objects are usually formed via
attractive forces, which allow the constituents to lower their energy by
binding together. Repulsive forces separate particles in free space. However,
in a structured environment such as a periodic potential and in the absence of
dissipation, stable composite objects can exist even for repulsive
interactions. Here we report on the first observation of such an exotic bound
state, comprised of a pair of ultracold atoms in an optical lattice. Consistent
with our theoretical analysis, these repulsively bound pairs exhibit long
lifetimes, even under collisions with one another. Signatures of the pairs are
also recognised in the characteristic momentum distribution and through
spectroscopic measurements. There is no analogue in traditional condensed
matter systems of such repulsively bound pairs, due to the presence of strong
decay channels. These results exemplify on a new level the strong
correspondence between the optical lattice physics of ultracold bosonic atoms
and the Bose-Hubbard model, a correspondence which is vital for future
applications of these systems to the study of strongly correlated condensed
matter systems and to quantum information.Comment: 5 pages, 4 figure
Superfluid to Mott insulator transition in one, two, and three dimensions
No Heading: We have created one-, two-, and three-dimensional quantum gases and study the superfluid to Mott insulator transition. Measurements of the transition using Bragg spectroscopy show that the excitation spectra of the low-dimensional superfluids differ significantly from the three-dimensional cas
Superfluid, Mott-Insulator, and Mass-Density-Wave Phases in the One-Dimensional Extended Bose-Hubbard Model
We use the finite-size density-matrix-renormalization-group (FSDMRG) method
to obtain the phase diagram of the one-dimensional () extended
Bose-Hubbard model for density in the plane, where and
are, respectively, onsite and nearest-neighbor interactions. The phase diagram
comprises three phases: Superfluid (SF), Mott Insulator (MI) and Mass Density
Wave (MDW). For small values of and , we get a reentrant SF-MI-SF phase
transition. For intermediate values of interactions the SF phase is sandwiched
between MI and MDW phases with continuous SF-MI and SF-MDW transitions. We
show, by a detailed finite-size scaling analysis, that the MI-SF transition is
of Kosterlitz-Thouless (KT) type whereas the MDW-SF transition has both KT and
two-dimensional-Ising characters. For large values of and we get a
direct, first-order, MI-MDW transition. The MI-SF, MDW-SF and MI-MDW phase
boundaries join at a bicritical point at (.Comment: 10 pages, 15 figure
Unitary Fermi gas, epsilon expansion, and nonrelativistic conformal field theories
We review theoretical aspects of unitary Fermi gas (UFG), which has been
realized in ultracold atom experiments. We first introduce the epsilon
expansion technique based on a systematic expansion in terms of the
dimensionality of space. We apply this technique to compute the thermodynamic
quantities, the quasiparticle spectrum, and the critical temperature of UFG. We
then discuss consequences of the scale and conformal invariance of UFG. We
prove a correspondence between primary operators in nonrelativistic conformal
field theories and energy eigenstates in a harmonic potential. We use this
correspondence to compute energies of fermions at unitarity in a harmonic
potential. The scale and conformal invariance together with the general
coordinate invariance constrains the properties of UFG. We show the vanishing
bulk viscosities of UFG and derive the low-energy effective Lagrangian for the
superfluid UFG. Finally we propose other systems exhibiting the nonrelativistic
scaling and conformal symmetries that can be in principle realized in ultracold
atom experiments.Comment: 44 pages, 15 figures, contribution to Lecture Notes in Physics
"BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge
- …