research

Unitary Fermi gas, epsilon expansion, and nonrelativistic conformal field theories

Abstract

We review theoretical aspects of unitary Fermi gas (UFG), which has been realized in ultracold atom experiments. We first introduce the epsilon expansion technique based on a systematic expansion in terms of the dimensionality of space. We apply this technique to compute the thermodynamic quantities, the quasiparticle spectrum, and the critical temperature of UFG. We then discuss consequences of the scale and conformal invariance of UFG. We prove a correspondence between primary operators in nonrelativistic conformal field theories and energy eigenstates in a harmonic potential. We use this correspondence to compute energies of fermions at unitarity in a harmonic potential. The scale and conformal invariance together with the general coordinate invariance constrains the properties of UFG. We show the vanishing bulk viscosities of UFG and derive the low-energy effective Lagrangian for the superfluid UFG. Finally we propose other systems exhibiting the nonrelativistic scaling and conformal symmetries that can be in principle realized in ultracold atom experiments.Comment: 44 pages, 15 figures, contribution to Lecture Notes in Physics "BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge

    Similar works

    Full text

    thumbnail-image

    Available Versions