133 research outputs found

    Heavy Meson Production at COSY - 11

    Get PDF
    The COSY-11 collaboration has measured the total cross section for the pp --> pp eta-prime and pp --> pp eta reactions in the excess energy range from Q = 1.5 MeV to Q = 23.6 MeV and from Q = 0.5 MeV to Q = 5.4 MeV, respectively. Measurements have been performed with the total luminosity of 73 nb^(-1) for the pp --> pp eta reaction and 1360 nb^(-1) for the pp --> pp eta-prime one. Recent results are presented and discussed.Comment: Invited talk at 4th International Conference on Physics at Storage Rings (STORI 99), Bloomington, Indiana, USA, September 12-16, 199

    Near-Threshold eta Meson Production in Proton-Proton Collisions

    Full text link
    The production of eta mesons has been measured in the proton-proton interaction close to the reaction threshold using the COSY-11 internal facility at the cooler synchrotron COSY. Total cross sections were determined for eight different excess energies in the range from 0.5 MeV to 5.4 MeV. The energy dependence of the total cross section is well described by the available phase-space volume weighted by FSI factors for the proton-proton and proton-eta pairs.Comment: 9 pages, 1 table, 5 figure

    KCTD Hetero-oligomers confer unique kinetic properties on Hippocampal GABA B Receptor-Induced K + Currents

    Get PDF
    GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, GABA. GABAB receptors were shown to associate with homo-oligomers of auxiliary KCTD8, KCTD12, KCTD12b, and KCTD16 subunits (named after their T1 K+-channel tetramerization domain) that regulate G-protein signaling of the receptor. Here we provide evidence that GABAB receptors also associate with hetero-oligomers of KCTD subunits. Coimmunoprecipitation experiments indicate that two-thirds of the KCTD16 proteins in the hippocampus of adult mice associate with KCTD12. We show that the KCTD proteins hetero-oligomerize through self-interacting T1 and H1 homology domains. Bioluminescence resonance energy transfer measurements in live cells reveal that KCTD12/KCTD16 hetero-oligomers associate with both the receptor and the G-protein. Electrophysiological experiments demonstrate that KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties on G-protein-activated Kir3 currents. During prolonged receptor activation (one min) KCTD12/KCTD16 hetero-oligomers produce moderately desensitizing fast deactivating K+ currents, whereas KCTD12 and KCTD16 homo-oligomers produce strongly desensitizing fast deactivating currents and nondesensitizing slowly deactivating currents, respectively. During short activation (2 s) KCTD12/KCTD16 hetero-oligomers produce nondesensitizing slowly deactivating currents. Electrophysiological recordings from hippocampal neurons of KCTD knock-out mice are consistent with these findings and indicate that KCTD12/KCTD16 hetero-oligomers increase the duration of slow IPSCs. In summary, our data demonstrate that simultaneous assembly of distinct KCTDs at the receptor increases the molecular and functional repertoire of native GABAB receptors and modulates physiologically induced K+ current responses in the hippocampus

    Structural phase transition and opto-electronic properties of NaZnAs

    Get PDF
    In this study, we predict the structural phase transitions as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound. Calculations employ the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme. The exchange-correlation potential is treated within the generalized gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). In addition, Tran and Blaha (TB) modified Becke-Johnson (mBJ) potential is also used to obtain more accurate optoelectronic properties. Geometry optimization is performed to obtain reliable total energies and other structural parameters for each NaZnAs phase. In our study, the sequence of the structural phase transition on compression is Cu2Sb-type ? ß ? a phase. NaZnAs is a direct (G-G) band gap semiconductor for all the structural phases. However, compared to PBE-GGA, the mBJ approximation reproduces better fundamental band gaps. Moreover, for insight into its potential for photovoltaic applications, different optical parameters are studied

    Continuum-mechanical, Anisotropic Flow model for polar ice masses, based on an anisotropic Flow Enhancement factor

    Get PDF
    A complete theoretical presentation of the Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor (CAFFE model) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large polar ice masses in which induced anisotropy occurs. The anisotropic response of the polycrystalline ice is described by a generalization of Glen's flow law, based on a scalar anisotropic enhancement factor. The enhancement factor depends on the orientation mass density, which is closely related to the orientation distribution function and describes the distribution of grain orientations (fabric). Fabric evolution is governed by the orientation mass balance, which depends on four distinct effects, interpreted as local rigid body rotation, grain rotation, rotation recrystallization (polygonization) and grain boundary migration (migration recrystallization), respectively. It is proven that the flow law of the CAFFE model is truly anisotropic despite the collinearity between the stress deviator and stretching tensors.Comment: 22 pages, 5 figure

    Total Cross Section of the Reaction pp \to pK^+\Lambda Close to Threshold

    Full text link
    The energy dependence of the total cross section for the pp \to pK^+\Lambda reaction was measured in the threshold region covering the excess energy range up to 7MeV. Existing model calculations describe the slope of the measured cross sections well, but are too low by a factor of two to three in rate. The data were used for a precise determination of the beam momentum of the COSY-synchrotron.Comment: 11 pages, 5 figure

    State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling

    Get PDF
    Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets

    Comparison of Lambda and Sigma(0) Threshold Production in Proton-Proton Collisions

    Full text link
    Threshold measurements of the associated strangeness production reactions pp --> p K(+) Lambda and pp --> p K(+) Sigma(0) are presented. Although slight differences in the shapes of the excitation functions are observed, the most remarkable feature of the data is that at the same excess energy the total cross section for the Sigma(0) production appears to be about a factor of 28 smaller than the one for the Lambda particle. It is concluded that strong Sigma(0)-p final state interactions, and in particular the Sigma-N --> Lambda-p conversion reaction, are the likely cause of the depletion for the yield in the Sigma signal. This hypothesis is in line with other experimental evidence in the literature.Comment: 13 pages, 3 figures, 1 tabl

    η\eta^{\prime} production in proton-proton scattering close to threshold}

    Full text link
    The ppppηpp \to pp \eta^{\prime} (958) reaction has been measured at COSY using the internal beam and the COSY-11 facility. The total cross sections at the four different excess energies \mbox{Q= 1.5 MeV, 1.7 MeV, 2.9 MeV, Q = ~1.5 ~MeV, ~1.7 ~MeV, ~2.9 ~MeV, and  4.1MeV ~4.1 MeV} have been evaluated to be \mbox{σ=2.5±0.5 nb \sigma = 2.5 \pm 0.5~nb,    2.9±1.1 nb~~~ 2.9 \pm 1.1~nb,    12.7±3.2 nb~~~ 12.7 \pm 3.2~nb, ~ and    25.2±3.6 nb~~~ 25.2 \pm 3.6 ~nb }, respectively. In this region of excess energy the η\eta^{\prime} (958) cross sections are much lower compared to those of the π0\pi ^0 and η\eta production.Comment: 11 pages, 3 figure
    corecore