5,955 research outputs found
Photon generation in an electromagnetic cavity with a time-dependent boundary
We report the observation of photon generation in a microwave cavity with a
time-dependent boundary condition. Our system is a microfabricated quarter-wave
coplanar waveguide cavity. The electrical length of the cavity is varied using
the tunable inductance of a superconducting quantum interference device. It is
measured in the quantum regime, where the temperature is significantly less
than the resonance frequency (~ 5 GHz). When the length is modulated at
approximately twice the static resonance frequency, spontaneous oscillations of
the cavity field are observed. Time-resolved measurements of the dynamical
state of the cavity show multiple stable states. The behavior is well described
by theory. Connections to the dynamical Casimir effect are discussed.Comment: 5 pages, 3 Figure
Neutral gas in Lyman-alpha emitting galaxies Haro 11 and ESO 338-IG04 measured through sodium absorption
Context. The Lyman alpha emission line of galaxies is an important tool for
finding galaxies at high redshift, and thus probe the structure of the early
universe. However, the resonance nature of the line and its sensitivity to dust
and neutral gas is still not fully understood.
  Aims. We present measurements of the velocity, covering fraction and optical
depth of neutral gas in front of two well known local blue compact galaxies
that show Lyman alpha in emission: ESO 338-IG 04 and Haro 11. We thus test
observationally the hypothesis that Lyman alpha can escape through neutral gas
by being Doppler shifted out of resonance.
  Methods. We present integral field spectroscopy from the GIRAFFE/Argus
spectrograph at VLT/FLAMES in Paranal, Chile. The excellent wavelength
resolution allows us to accurately measure the velocity of the ionized and
neutral gas through the H-alpha emission and Na D absorption, which traces the
ionized medium and cold interstellar gas, respectively. We also present
independent measurements with the VLT/X-shooter spectrograph which confirm our
results.
  Results. For ESO 338-IG04, we measure no significant shift of neutral gas.
The best fit velocity is -15 (16) km/s. For Haro 11, we see an outflow from
knot B at 44 (13) km/s and infalling gas towards knot C with 32 (12) km/s.
Based on the relative strength of the Na D absorption lines, we estimate low
covering fractions of neutral gas (down to 10%) in all three cases.
  Conclusions. The Na D absorption likely occurs in dense clumps with higher
column densities than where the bulk of the Ly-alpha scattering takes place.
Still, we find no strong correlation between outflowing neutral gas and a high
Lyman alpha escape fraction. The Lyman alpha photons from these two galaxies
are therefore likely escaping due to a low column density and/or covering
fraction.Comment: 9 pages, 3 figure
Fast tuning of superconducting microwave cavities
Photons are fundamental excitations of the electromagnetic field and can be
captured in cavities. For a given cavity with a certain size, the fundamental
mode has a fixed frequency {\it f} which gives the photons a specific "color".
The cavity also has a typical lifetime , which results in a finite
linewidth {\it f}. If the size of the cavity is changed fast compared
to , and so that the frequency change {\it f} {\it
f}, then it is possible to change the "color" of the captured photons. Here we
demonstrate superconducting microwave cavities, with tunable effective lengths.
The tuning is obtained by varying a Josephson inductance at one end of the
cavity. We show data on four different samples and demonstrate tuning by
several hundred linewidths in a time . Working in the few
photon limit, we show that photons stored in the cavity at one frequency will
leak out from the cavity with the new frequency after the detuning. The
characteristics of the measured devices make them suitable for different
applications such as dynamic coupling of qubits and parametric amplification.Comment: 2nd International Workshop on Solid-State Quantum Computing, June
  2008, Taipei, Taiwa
Theoretical Properties of Projection Based Multilayer Perceptrons with Functional Inputs
Many real world data are sampled functions. As shown by Functional Data
Analysis (FDA) methods, spectra, time series, images, gesture recognition data,
etc. can be processed more efficiently if their functional nature is taken into
account during the data analysis process. This is done by extending standard
data analysis methods so that they can apply to functional inputs. A general
way to achieve this goal is to compute projections of the functional data onto
a finite dimensional sub-space of the functional space. The coordinates of the
data on a basis of this sub-space provide standard vector representations of
the functions. The obtained vectors can be processed by any standard method. In
our previous work, this general approach has been used to define projection
based Multilayer Perceptrons (MLPs) with functional inputs. We study in this
paper important theoretical properties of the proposed model. We show in
particular that MLPs with functional inputs are universal approximators: they
can approximate to arbitrary accuracy any continuous mapping from a compact
sub-space of a functional space to R. Moreover, we provide a consistency result
that shows that any mapping from a functional space to R can be learned thanks
to examples by a projection based MLP: the generalization mean square error of
the MLP decreases to the smallest possible mean square error on the data when
the number of examples goes to infinity
Women, know your limits: Cultural sexism in academia
Despite the considerable advances of the feminist movement across Western societies, in Universities women are less likely to be promoted, or paid as much as their male colleagues, or even get jobs in the first place. One way in which we can start to reflect on why this might be the case is through hearing the experiences of women academics themselves. Using feminist methodology, this article attempts to unpack and explore just some examples of
‘cultural sexism’ which characterise the working lives of many women in British academia.This article uses qualitative methods to describe and make sense of just some of those experiences. In so doing, the argument is also made that the activity of academia is profoundly gendered and this explicit acknowledgement may contribute to our
understanding of the under-representation of women in senior positions
Progression of RNA-sequencing to single-cell applications
New methods enable new discoveries. My time as a PhD student has run in parallel with the maturation of the RNA-seq method, and I have used it to discover basic properties of gene expression and transcriptomes. My part has been bioinformatics – the computer analysis of biological data.
RNA-seq quantifies gene expression for all genes in one experiment, allowing discoveries without prior knowledge, as opposed to single-gene hypothesis testing. When I started my PhD, this was done by microarray followed by qRT-PCR validation, which can be arduous. In contrast to microarrays, RNA-seq quantifies expression with little ambiguity of which gene each expression value corresponds to, and in absolute terms. But at the time, data analysis of RNA-seq was full of unknowns and there were little software available. Nowadays, partly the result of my work, the data analysis is much less complicated, and RNA-seq can be performed on diminutive samples, down to single cells, which was not viable using microarrays.
My first study (Paper I) used one of the very first RNA-seq datasets to study general features of transcriptomes, such as mean mRNA length (~1,500 nt) and the number of genes expressed per tissue (~13,000). I also found special features of some tissues: the liver transcriptome is dominated by a few highly expressed gene, brain expresses especially long mRNAs and testis expresses many more genes than other tissues. Following this tissue RNA-seq study, I evaluated a new library preparation method for single-cell RNA-seq (Paper III), developed before the prevalence of single-cell RNA-seq. I used technical replicates to show that the method was accurate and reliable for the more highly expressed genes at single-cell RNA levels, and with input RNA amounts corresponding to >50 cells it produced as good quality data as bulk RNA-seq. Then the method was applied on melanoma cells isolated from human blood, and I listed surface antigen genes that distinguished these circulating tumour cells from other cells in the blood.
This single-cell RNA-seq method was then applied on pre-implantation embryo cells (Paper IV). Using first-generation crosses between two mouse strains, I could separate the expression from the maternal and the paternal copies of the genes. I found that 12-24% of the genes express only one of their two copies in any given cell, in a random manner that affects almost all the expressed genes. I also found that the two copies are expressed independently from each other.
Finally, I studied Sox transcription factors during neural development (Paper II), combining RNA-seq and microarray data for different cell types with ChIP-seq data for transcription factor binding and histone modifications. I found that Sox proteins bind to the enhancers active in the stem cells where the Sox proteins are active, but also to enhancers specific to subsequent cells in ii development. I also found that different Sox factors bind to much the same enhancers, and that they can induce histone modifications.
In conclusion, my work has advanced the RNA-seq method and increased the understanding of transcriptional regulation and output
Venture Capitalists' Evaluations of Start-up Teams: Trade-offs, Knock-out Criteria, and the Impact of VC Experience
The start-up team plays a key role in venture capitalists' evaluations of venture proposals. Our findings go
beyond existing research, first by providing a detailed exploration of VCs' team evaluation criteria, and
second by investigating the moderator variable of VC experience. Our results reveal utility trade-offs
between team characteristics and thus provide answers to questions such as "What strength does it take to
compensate for a weakness in characteristic A?" Moreover, our analysis reveals that novice VCs tend to
focus on the qualifications of individual team members, while experienced VCs focus more on team
cohesion. Data was obtained in a conjoint experiment with 51 professionals in VC firms and analyzed
using discrete choice econometric models. (author's abstract
Growth, profits and technological choice: The case of the Lancashire cotton textile industry
Using Lancashire textile industry company case studies and financial records, mainly from the period just before the First World War, the processes of growth and decline are re-examined. These are considered by reference to the nature of Lancashire entrepreneurship and the impact on technological choice. Capital accumulation, associated wealth distributions and the character of Lancashire business organisation were sybiotically linked to the success of the industry before 1914. However, the legacy of that accumulation in later decades, chronic overcapacity, formed a barrier to reconstruction and enhanced the preciptious decline of a once great industry
Tests of Lorentz violation in muon antineutrino to electron antineutrino oscillations
A recently developed Standard-Model Extension (SME) formalism for neutrino
oscillations that includes Lorentz and CPT violation is used to analyze the
sidereal time variation of the neutrino event excess measured by the Liquid
Scintillator Neutrino Detector (LSND) experiment. The LSND experiment,
performed at Los Alamos National Laboratory, observed an excess, consistent
with neutrino oscillations, of  in a beam of . It
is determined that the LSND oscillation signal is consistent with no sidereal
variation. However, there are several combinations of SME coefficients that
describe the LSND data; both with and without sidereal variations. The scale of
Lorentz and CPT violation extracted from the LSND data is of order 
GeV for the SME coefficients  and . This solution for
Lorentz and CPT violating neutrino oscillations may be tested by other short
baseline neutrino oscillation experiments, such as the MiniBooNE experiment.Comment: 10 pages, 10 figures, 2 tables, uses revtex4 replaced with version to
  be published in Physical Review D, 11 pages, 11 figures, 2 tables, uses
  revtex
- …
