690 research outputs found

    Spin wave spectrum of the quantum ferromagnet on the pyrochlore lattice Lu2V2O7

    Get PDF
    Neutron inelastic scattering has been used to probe the spin dynamics of the quantum (S=1/2) ferromagnet on the pyrochlore lattice Lu2V2O7. Well-defined spin waves are observed at all energies and wavevectors, allowing us to determine the parameters of the Hamiltonian of the system. The data are found to be in excellent overall agreement with a minimal model that includes a nearest- neighbour Heisenberg exchange J = 8:22(2) meV and a Dzyaloshinskii-Moriya interaction (DMI) D =1:5(1) meV. The large DMI term revealed by our study is broadly consistent with the model developed by Onose et al. to explain the magnon Hall effect they observed in Lu2V2O7 [1], although our ratio of D=J = 0:18(1) is roughly half of their value and three times larger than calculated by ab initio methods [2].Comment: 5 pages, 4 figure

    The axonally secreted protein axonin-1 is a potent substratum for neurite growth

    Get PDF
    Axonin-1 is a neuronal glycoprotein occurring both as a membrane-bound and a secreted form. Membrane-bound axonin-1 is predominantly located in membranes of developing nerve fiber tracts and has recently been characterized as a cell adhesion molecule; the soluble form is secreted from axons and accumulates in the cerebrospinal fluid and the vitreous fluid of the eye. In the present study, we addressed the question as to whether secreted axonin-1 was released in a functionally competent form and we found that it strongly promotes neurite outgrowth when presented to neurons as an immobilized substratum. Neurite lengths elaborated by embryonic dorsal root ganglia neurons on axonin-1 were similar to those on the established neurite-promoting substrata L1 and laminin. Fab fragments of axonin-1 antibodies completely inhibited neurite growth on axonin-1, but not on other substrata. In soluble form, axonin-1 had an anti-adhesive effect, as revealed by perturbation of neurite fasciculation. In view of their structural similarity, we conclude that secreted and membrane-bound axonin-1 interact with the same growth-promoting neuritic receptor. The fact that secreted axonin-1 is functionally active, together with our previous findings that it is secreted from an internal cellular pool, suggests a functional dualism between membrane-bound and secreted axonin-1 at the site of secretion, which is most likely the growth cone. The secretion of adhesion molecules could represent a powerful and rapidly acting regulatory element of growth cone-neurite interactions in the control of neurite elongation, pathway selection, and possibly target recognition

    Correlated decay of triplet excitations in the Shastry-Sutherland compound SrCu2_2(BO3_3)2_2

    Get PDF
    The temperature dependence of the gapped triplet excitations (triplons) in the 2D Shastry-Sutherland quantum magnet SrCu2_2(BO3_3)2_2 is studied by means of inelastic neutron scattering. The excitation amplitude rapidly decreases as a function of temperature while the integrated spectral weight can be explained by an isolated dimer model up to 10~K. Analyzing this anomalous spectral line-shape in terms of damped harmonic oscillators shows that the observed damping is due to a two-component process: one component remains sharp and resolution limited while the second broadens. We explain the underlying mechanism through a simple yet quantitatively accurate model of correlated decay of triplons: an excited triplon is long-lived if no thermally populated triplons are near-by but decays quickly if there are. The phenomenon is a direct consequence of frustration induced triplon localization in the Shastry--Sutherland lattice.Comment: 5 pages, 4 figure

    Path integral regularization of QED by means of Stueckelberg fields

    Full text link
    With the help of a Stueckelberg field we construct a regularized U(1) gauge invariant action through the introduction of cutoff functions. This action has the property that it converges formally to the unregularized action of QED when the ultraviolet cutoff goes to infinity. Integrating out exactly the Stueckelberg field we obtain a simple effective regularized action, which is fully gauge invariant and gives rise to the same prediction as QED at the tree level and to the one loop order.Comment: LaTeX file, 12 pages, 3 figures. Revised version, to be published in Phys. Lett.

    Bound states and field-polarized Haldane modes in a quantum spin ladder

    Get PDF
    The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin ladder material, we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse) excitations of the fully spin-polarized ladder, which have not been observed previously and are close analogs of the modes anticipated in a polarized Haldane chain. Theoretical modelling of the dynamical response demonstrates our complete quantitative understanding of these states.Comment: 6 pages, 3 figures plus supplementary material 7 pages 5 figure

    Nav1.4 Deregulation in Dystrophic Skeletal Muscle Leads to Na+ Overload and Enhanced Cell Death

    Get PDF
    Duchenne muscular dystrophy (DMD) is a hereditary degenerative disease manifested by the absence of dystrophin, a structural, cytoskeletal protein, leading to muscle degeneration and early death through respiratory and cardiac muscle failure. Whereas the rise of cytosolic Ca2+ concentrations in muscles of mdx mouse, an animal model of DMD, has been extensively documented, little is known about the mechanisms causing alterations in Na+ concentrations. Here we show that the skeletal muscle isoform of the voltage-gated sodium channel, Nav1.4, which represents over 90% of voltage-gated sodium channels in muscle, plays an important role in development of abnormally high Na+ concentrations found in muscle from mdx mice. The absence of dystrophin modifies the expression level and gating properties of Nav1.4, leading to an increased Na+ concentration under the sarcolemma. Moreover, the distribution of Nav1.4 is altered in mdx muscle while maintaining the colocalization with one of the dystrophin-associated proteins, syntrophin α-1, thus suggesting that syntrophin is an important linker between dystrophin and Nav1.4. Additionally, we show that these modifications of Nav1.4 gating properties and increased Na+ concentrations are strongly correlated with increased cell death in mdx fibers and that both cell death and Na+ overload can be reversed by 3 nM tetrodotoxin, a specific Nav1.4 blocker

    Diverging thermal expansion of the spin-ladder system (C5_5H12_{12}N)2_2CuBr4_4

    Get PDF
    We present high-resolution measurements of the c⋆c^\star-axis thermal expansion and magnetostriction of piperidinium copper bromide \hp. The experimental data at low temperatures is well accounted for by a two-leg spin-ladder Hamiltonian. The thermal expansion shows a complex behaviour with various sign changes and approaches a 1/T1/\sqrt{T} divergence at the critical fields. All low-temperature features are semi-quantitatively explained within a free fermion model; full quantitative agreement is obtained with Quantum Monte Carlo simulations.Comment: 4 pages, 5 figures; version 2 is slightly shortened and typos are correcte

    Electromagnon dispersion probed by inelastic X-ray scattering in LiCrO2

    Get PDF
    Inelastic X-ray scattering with meV energy resolution (IXS) is an ideal tool to measure collective excitations in solids and liquids. In non-resonant scattering condition, the cross-section is strongly dominated by lattice vibrations (phonons). However, it is possible to probe additional degrees of freedom such as magnetic fluctuations that are strongly coupled to the phonons. The IXS spectrum of the coupled system contains not only the phonon dispersion but also the so far undetected magnetic correlation function. Here we report the observation of strong magnon-phonon coupling in LiCrO2 that enables the measurement of magnetic correlations throughout the Brillouin zone via IXS. We find electromagnon excitations and electric dipole active two-magnon excitations in the magnetically ordered phase and heavily damped electromagnons in the paramagnetic phase of LiCrO2. We predict that several (frustrated) magnets with dominant direct exchange and non-collinear magnetism show surprisingly large IXS cross-section for magnons and multi-magnon processes

    Localizing fields on brane in magnetized backgound

    Full text link
    To localize the scalar, fermion, and abelian gauge fields on our 3-brane, a simple mechanism with a hypothetical "magnetic field" in the bulk is proposed. This mechanism is to treat all fields in the equal footing without ad hoc consideration. In addition, the machanism can be easily realized in a flat dimension six Minkowski space and it works even in the weak coupling limit

    Multi-graviton theory, a latticized dimension, and the cosmological constant

    Full text link
    Beginning with the Pauli-Fierz theory, we construct a model for multi-graviton theory. Couplings between gravitons belonging to nearest-neighbor ``theory spaces'' lead to a discrete mass spectrum. Our model coincides with the Kaluza-Klein theory whose fifth dimension is latticized. We evaluate one-loop vacuum energy in models with a circular latticized extra dimension as well as with compact continuous dimensions. We find that the vacuum energy can take a positive value, if the dimension of the continuous space time is 6,10,...6, 10,.... Moreover, since the amount of the vacuum energy can be an arbitrary small value according to the choice of parameters in the model, our models is useful to explain the small positive dark energy in the present universe.Comment: 10 pages, No figure. Needs REVTeX4. citations are corrected and minor correction
    • …
    corecore