125 research outputs found

    Radio Bursts Associated with Flare and Ejecta in the 13 July 2004 Event

    Full text link
    We investigate coronal transients associated with a GOES M6.7 class flare and a coronal mass ejection (CME) on 13 July 2004. During the rising phase of the flare, a filament eruption, loop expansion, a Moreton wave, and an ejecta were observed. An EIT wave was detected later on. The main features in the radio dynamic spectrum were a frequency-drifting continuum and two type II bursts. Our analysis shows that if the first type II burst was formed in the low corona, the burst heights and speed are close to the projected distances and speed of the Moreton wave (a chromospheric shock wave signature). The frequency-drifting radio continuum, starting above 1 GHz, was formed almost two minutes prior to any shock features becoming visible, and a fast-expanding piston (visible as the continuum) could have launched another shock wave. A possible scenario is that a flare blast overtook the earlier transient, and ignited the first type II burst. The second type II burst may have been formed by the same shock, but only if the shock was propagating at a constant speed. This interpretation also requires that the shock-producing regions were located at different parts of the propagating structure, or that the shock was passing through regions with highly different atmospheric densities. This complex event, with a multitude of radio features and transients at other wavelengths, presents evidence for both blast-wave-related and CME-related radio emissions.Comment: 14 pages, 6 figures; Solar Physics Topical Issue, in pres

    Radio Observations of the January 20, 2005 X-Class Event

    Full text link
    We present a multi-frequency and multi-instrument study of the 20 January 2005 event. We focus mainly on the complex radio signatures and their association with the active phenomena taking place: flares, CMEs, particle acceleration and magnetic restructuring. As a variety of energetic particle accelerators and sources of radio bursts are present, in the flare-ejecta combination, we investigate their relative importance in the progress of this event. The dynamic spectra of {Artemis-IV-Wind/Waves-Hiras with 2000 MHz-20 kHz frequency coverage, were used to track the evolution of the event from the low corona to the interplanetary space; these were supplemented with SXR, HXR and gamma-ray recordings. The observations were compared with the expected radio signatures and energetic-particle populations envisaged by the {Standard Flare--CME model and the reconnection outflow termination shock model. A proper combination of these mechanisms seems to provide an adequate model for the interpretation of the observational data.Comment: Accepted for publication in Solar Physic

    Solar flares at submillimeter wavelengths

    Get PDF
    We discuss the implications of the first systematic observations of solar flares at submillimeter wavelengths, defined here as observing wavelengths shorter than 3mm (frequencies higher than 0.1THz). The events observed thus far show that this wave band requires a new understanding of high-energy processes in solar flares. Several events, including observations from two different observatories, show during the impulsive phase of the flare a spectral component with a positive (increasing) slope at the highest observable frequencies (up to 405GHz). To emphasize the increasing spectra and the possibility that these events could be even more prominent in the THz range, we term this spectral feature a "THz component”. Here we review the data and methods, and critically assess the observational evidence for such distinct component(s). This evidence is convincing. We also review the several proposed explanations for these feature(s), which have been reported in three distinct flare phases. These data contain important clues to flare development and particle acceleration as a whole, but many of the theoretical issues remain open. We generally have lacked systematic observations in the millimeter-wave to far-infrared range that are needed to complete our picture of these events, and encourage observations with new facilitie

    An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles

    Full text link
    The extreme solar and SEP event of 20 January 2005 is analyzed from two perspectives. Firstly, we study features of the main phase of the flare, when the strongest emissions from microwaves up to 200 MeV gamma-rays were observed. Secondly, we relate our results to a long-standing controversy on the origin of SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs. All emissions from microwaves up to 2.22 MeV line gamma-rays during the main flare phase originated within a compact structure located just above sunspot umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed, indicating the presence of a large number of energetic electrons in strong magnetic fields. Thus, protons and electrons responsible for flare emissions during its main phase were accelerated within the magnetic field of the active region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays identified with pi^0-decay emission, are similar and correspond in time. The origin of the pi^0-decay gamma-rays is argued to be the same as that of lower energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600 km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from the same active region. Hence, the flare itself rather than the CME appears to determine the extreme nature of this event. We conclude that the acceleration, at least, to sub-relativistic energies, of electrons and protons, responsible for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are likely to have occurred simultaneously within the flare region. We do not rule out a probable contribution from particles accelerated in the CME-driven shock for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo corrected. The original publication is available at http://www.springerlink.co

    On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode

    Full text link
    A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun's surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving their nature. With this review, we gather the current state-of-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion of several remaining open questions in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for publicatio

    Incidence and trends of low back pain hospitalisation during military service – An analysis of 387,070 Finnish young males

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is evidence that low back pain (LBP) during young adulthood and military service predicts LBP later in life. The purpose of this study was to investigate the incidence and trends of LBP hospitalisation among Finnish military conscripts.</p> <p>Methods</p> <p>All male conscripts performing their compulsory military service during 1990–2002 were included in the study population. Altogether 387,070 military conscripts were followed throughout their six-to-twelve-month service period. Data on LBP hospitalisations were obtained from the National Hospital Discharge Register.</p> <p>Results</p> <p>Altogether 7,240 LBP hospitalisations were identified among 5,061 (1.3%) male conscripts during the study period. The event-based incidence of LBP hospitalisation was 27.0 (95% confidence interval (CI): 25.7–28.2). In most cases, the diagnosis was unspecified LBP (<it>n </it>= 5,141, 71%) followed by lumbar disc disorders (<it>n </it>= 2,069, 29%). Hospitalisation incidence due to unspecified LBP was 19.1 per 1,000 person-years (95% CI: 18.3 to 20.4), and 7.8 per 1,000 person-years (95% CI: 6.7 to 8.3) due to lumbar disc disorders. The incidence of unspecified LBP remained unaltered, while hospitalisation due to lumbar disc disorders declined from 1993 onwards.</p> <p>Conclusion</p> <p>Although conscripts accepted into military training pass physician-performed examinations as healthy, young adults, LBP hospitalisation causes significant morbidity during military service.</p

    Origin of the submillimeter radio emission during the time-extended phase of a solar flare

    Get PDF
    Solar flares observed in the 200-400 GHz radio domain may exhibit a slowly varying and time-extended component which follows a short (few minutes) impulsive phase and which lasts for a few tens of minutes to more than one hour. The few examples discussed in the literature indicate that such long-lasting submillimeter emission is most likely thermal bremsstrahlung. We present a detailed analysis of the time-extended phase of the 2003 October 27 (M6.7) flare, combining 1-345 GHz total-flux radio measurements with X-ray, EUV, and H{\alpha} observations. We find that the time-extended radio emission is, as expected, radiated by thermal bremsstrahlung. Up to 230 GHz, it is entirely produced in the corona by hot and cool materials at 7-16 MK and 1-3 MK, respectively. At 345 GHz, there is an additional contribution from chromospheric material at a few 10^4 K. These results, which may also apply to other millimeter-submillimeter radio events, are not consistent with the expectations from standard semi-empirical models of the chromosphere and transition region during flares, which predict observable radio emission from the chromosphere at all frequencies where the corona is transparent.Comment: 27 pages, 7 figure

    Numerical simulation of the 12 May 1997 CME Event: The role of magnetic reconnection

    Get PDF
    We perform a numerical study of the evolution of a Coronal Mass Ejection (CME) and its interaction with the coronal magnetic field based on the 12 May 1997, CME event using a global MagnetoHydroDynamic (MHD) model for the solar corona. The ambient solar wind steady-state solution is driven by photospheric magnetic field data, while the solar eruption is obtained by superimposing an unstable flux rope onto the steady-state solution. During the initial stage of CME expansion, the core flux rope reconnects with the neighboring field, which facilitates lateral expansion of the CME footprint in the low corona. The flux rope field also reconnects with the oppositely orientated overlying magnetic field in the manner of the breakout model. During this stage of the eruption, the simulated CME rotates counter-clockwise to achieve an orientation that is in agreement with the interplanetary flux rope observed at 1 AU. A significant component of the CME that expands into interplanetary space comprises one of the side lobes created mainly as a result of reconnection with the overlying field. Within 3 hours, reconnection effectively modifies the CME connectivity from the initial condition where both footpoints are rooted in the active region to a situation where one footpoint is displaced into the quiet Sun, at a significant distance (≈1R ) from the original source region. The expansion and rotation due to interaction with the overlying magnetic field stops when the CME reaches the outer edge of the helmet streamer belt, where the field is organized on a global scale. The simulation thus offers a new view of the role reconnection plays in rotating a CME flux rope and transporting its footpoints while preserving its core structure
    corecore