24 research outputs found

    Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study

    Full text link

    Membrane switch hypothesis. 1. Cell density influences lateral domain structure of tumor cell membranes

    No full text
    The domain structure of human cancer cells membranes was investigated by electron paramagnetic resonance (EPR) in different phases of cell growth, and the results were compared to those obtained for nonmalignant cells. On the basis of computer simulation of the EPR spectra using a newly developed GHOST condensation routine it was suggested that plasma membranes of cancer cells have less lateral lipid domain types at confluent conditions than in the exponential growing phase, while in nonmalignant cells the domain structure does not change significantly during cell growth. In accordance to our experimental data we propose a membrane switch hypothesis: disappearance of certain membrane domain types might act as a switch promoting the clustering of membrane constituents into the active units in a common lipid membrane domain and thus influencing the physiology of cells

    Dissemination of New Delhi metallo-β-lactamase-1-producing Acinetobacter baumannii in Europe

    Get PDF
    Multidrug-resistant and New Delhi metallo-β-lactamase 1 (NDM-1) -producing Acinetobacter baumannii are increasingly reported. A collection of five NDM-1-positive A. baumannii isolates recovered in four European countries were analysed. Genotyping was performed by pulsed-field gel electrophoresis, multiplex PCR sequence typing, Diversilab and multilocus sequence typing. Three distinct sequence types were identified. All isolates harboured a chromosomally located bla(NDM-1) gene within a Tn125-like transposon. One isolate co-expressed another unrelated carbapenemase OXA-23. This report constitutes the first epidemiological study of NDM-1-producing A. baumannii from four countries

    Association of Empiric Antibiotic Regimen Discordance With 30-Day Mortality in Neonatal and Pediatric Bloodstream Infection-A Global Retrospective Cohort Study

    No full text
    BACKGROUND: While there have been studies in adults reporting discordant empiric antibiotic treatment associated with poor outcomes, this area is relatively unexplored in children and neonates despite evidence of increasing resistance to recommended first-line treatment regimens. METHODS: Patient characteristics, antibiotic treatment, microbiology, and 30-day all-cause outcome from children <18 years with blood-culture-confirmed bacterial bloodstream infections (BSI) were collected anonymously using REDCap™ through the Global Antibiotic Prescribing and Resistance in Neonates and Children network from February 2016 to February 2017. Concordance of early empiric antibiotic treatment was determined using European Committee on Antimicrobial Susceptibility Testing interpretive guidelines. The relationship between concordance of empiric regimen and 30-day mortality was investigated using multivariable regression. RESULTS: Four hundred fifty-two children with blood-culture-positive BSI receiving early empiric antibiotics were reported by 25 hospitals in 19 countries. Sixty percent (273/452) were under the age of 2 years. S. aureus, E. coli, and Klebsiella spp. were the most common isolates, and there were 158 unique empiric regimens prescribed. Fifteen percent (69/452) of patients received a discordant regimen, and 7.7% (35/452) died. Six percent (23/383) of patients with concordant regimen died compared with 17.4% (12/69) of patients with discordant regimen. Adjusting for age, sex, presence of comorbidity, unit type, hospital-acquired infections, and Gram stain, the odds of 30-day mortality were 2.9 (95% confidence interval: 1.2-7.0; P = 0.015) for patients receiving discordant early empiric antibiotics. CONCLUSIONS: Odds of mortality in confirmed pediatric BSI are nearly 3-fold higher for patients receiving a discordant early empiric antibiotic regimen. The impact of improved concordance of early empiric treatment on mortality, particularly in critically ill patients, needs further evaluation

    Fourteen-Genome Comparison Identifies DNA Markers for Severe-Disease-Associated Strains of Clostridium difficile▿†

    Get PDF
    Clostridium difficile is a common cause of infectious diarrhea in hospitalized patients. A severe and increased incidence of C. difficile infection (CDI) is associated predominantly with the NAP1 strain; however, the existence of other severe-disease-associated (SDA) strains and the extensive genetic diversity across C. difficile complicate reliable detection and diagnosis. Comparative genome analysis of 14 sequenced genomes, including those of a subset of NAP1 isolates, allowed the assessment of genetic diversity within and between strain types to identify DNA markers that are associated with severe disease. Comparative genome analysis of 14 isolates, including five publicly available strains, revealed that C. difficile has a core genome of 3.4 Mb, comprising ∼3,000 genes. Analysis of the core genome identified candidate DNA markers that were subsequently evaluated using a multistrain panel of 177 isolates, representing more than 50 pulsovars and 8 toxinotypes. A subset of 117 isolates from the panel had associated patient data that allowed assessment of an association between the DNA markers and severe CDI. We identified 20 candidate DNA markers for species-wide detection and 10,683 single nucleotide polymorphisms (SNPs) associated with the predominant SDA strain (NAP1). A species-wide detection candidate marker, the sspA gene, was found to be the same across 177 sequenced isolates and lacked significant similarity to those of other species. Candidate SNPs in genes CD1269 and CD1265 were found to associate more closely with disease severity than currently used diagnostic markers, as they were also present in the toxin A-negative and B-positive (A-B+) strain types. The genetic markers identified illustrate the potential of comparative genomics for the discovery of diagnostic DNA-based targets that are species specific or associated with multiple SDA strains
    corecore