90 research outputs found

    On a generalization of Jacobi's elliptic functions and the Double Sine-Gordon kink chain

    Full text link
    A generalization of Jacobi's elliptic functions is introduced as inversions of hyperelliptic integrals. We discuss the special properties of these functions, present addition theorems and give a list of indefinite integrals. As a physical application we show that periodic kink solutions (kink chains) of the double sine-Gordon model can be described in a canonical form in terms of generalized Jacobi functions.Comment: 18 pages, 9 figures, 3 table

    Quantum mass correction for the twisted kink

    Full text link
    We present an analytic result for the 1-loop quantum mass correction in semiclassical quantization for the twisted \phi^4 kink on S^1 without explicit knowledge of the fluctuation spectrum. For this purpose we use the contour integral representation of the spectral zeta function. By solving the Bethe ansatz equations for the n=2 Lame equation we obtain an analytic expression for the corresponding spectral discriminant. We discuss the renormalization issues of this model. An energetically preferred size for the compact space is finally obtained.Comment: 18 pages, 2 figures;v2:references and discussion added, typos correcte

    YETI observations of the young transiting planet candidate CVSO 30 b

    Get PDF
    CVSO 30 is a unique young low-mass system, because, for the first time, a close-in transiting and a wide directly imaged planet candidates are found around a common host star. The inner companion, CVSO 30 b, is the first possible young transiting planet orbiting a previously known weak-lined T-Tauri star. With five telescopes of the 'Young Exoplanet Transit Initiative' (YETI) located in Asia, Europe and South America we monitored CVSO 30 over three years in a total of 144 nights and detected 33 fading events. In two more seasons we carried out follow-up observations with three telescopes. We can confirm that there is a change in the shape of the fading event between different observations and that the fading event even disappears and reappears. A total of 38 fading event light curves were simultaneously modelled. We derived the planetary, stellar, and geometrical properties of the system and found them slightly smaller but in agreement with the values from the discovery paper. The period of the fading event was found to be 1.36 s shorter and 100 times more precise than the previous published value. If CVSO 30 b would be a giant planet on a precessing orbit, which we cannot confirm, yet, the precession period may be shorter than previously thought. But if confirmed as a planet it would be the youngest transiting planet ever detected and will provide important constraints on planet formation and migration time-scales.Comment: 14 pages (20 with appendix), 7 figures (16 with appendix), 6 tables (7 with appendix

    Characterizing the morphology of the debris disk around the low-mass star GSC 07396-00759

    Get PDF
    Context. Debris disks have commonly been studied around intermediate-mass stars. Their intense radiation fields are believed to efficiently remove the small dust grains that are constantly replenished by collisions. For lower-mass stars, in particular M-stars, the dust removal mechanism needs to be further investigated given the much weaker radiation field produced by these objects. Aims. We present new polarimetric observations of the nearly edge-on disk around the pre-main sequence M-type star GSC 07396-00759, taken with VLT/SPHERE IRDIS, with the aim to better understand the morphology of the disk, its dust properties, and the star-disk interaction via the stellar mass-loss rate. Methods. We model our observations to characterize the location and properties of the dust grains using the Henyey-Greenstein approximation of the polarized phase function and evaluate the strength of the stellar winds. Results. We find that the observations are best described by an extended and highly inclined disk (i\approx 84.3\,^{\circ}\pm0.3) with a dust distribution centered at a radius r0107±2r_{0}\approx107\pm2 au. The polarized phase function S12S_{12} is best reproduced by an anisotropic scattering factor g0.6g\approx0.6 and small micron-sized dust grains with sizes s>0.3μs>0.3\,\mathrm{\mu}m. We furthermore discuss some of the caveats of the approach and a degeneracy between the grain size and the porosity. Conclusions. Even though the radius of the disk may be over-estimated, our results suggest that using a given scattering theory might not be sufficient to fully explain key aspects such as the shape of the phase function, or the dust grain size. With the caveats in mind, we find that the average mass-loss rate of GSC 07396-00759 can be up to 500 times stronger than that of the Sun, supporting the idea that stellar winds from low-mass stars can evacuate small dust grains from the disk

    Abundant sub-micron grains revealed in newly discovered extreme debris discs

    Get PDF
    This is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this record DATA AVAILABILITY: The VISIR data used in this paper are publicly available at ESO Archive (http://archive.eso.org/eso/eso_archive_main. html).Extreme debris discs (EDDs) are bright and warm circumstellar dusty structures around main sequence stars. They may represent the outcome of giant collisions occuring in the terrestrial region between large planetesimals or planetary bodies, and thus provide a rare opportunity to peer into the aftermaths of these events. Here, we report on results of a mini-survey we conducted with the aim to increase the number of known EDDs, investigate the presence of solid-state features around 10 μm in eight EDDs, and classify them into the silica or silicate dominated groups. We identify four new EDDs and derive their fundamental properties. For these, and for four other previously known discs, we study the spectral energy distribution around 10 μm by means of VLT/VISIR photometryin three narrow-band filters and conclude that all eight objects likely exhibit solid-state emission features from sub-micron grains. We find that four discs probably belong to the silicate dominated subgroup. Considering the age distribution of the entire EDD sample, we find that their incidence begins to decrease only after 300 Myr, suggesting that the earlier common picture that these objects are related to the formation of rocky planets may not be exclusive, and that other processes may be involved for older objects (≳100 Myr). Because most of the older EDD systems have wide, eccentric companions, we suggest that binarity may play a role in triggering late giant collisions.Hungarian National Research, Development and Innovation OfficeHungarian National Research, Development and Innovation OfficeBolyai+Royal SocietyNASANASAHungarian Academy of Science

    One-loop spectroscopy of semiclassically quantized strings: bosonic sector

    Get PDF
    We make a further step in the analytically exact quantization of spinning string states in semiclassical approximation, by evaluating the exact one-loop partition function for a class of two-spin string solutions for which quadratic fluctuations form a non-trivial system of coupled modes. This is the case of a folded string in the SU(2) sector, in the limit described by a quantum Landau–Lifshitz model. The same applies to the full bosonic sector of fluctuations over the folded spinning string in AdS5 with an angular momentum J in S5. Fluctuations are governed by a special class of fourth-order differential operators, with coefficients being meromorphic functions on the torus, which we are able to solve exactly

    The debris disc of HD 131488: bringing together thermal emission and scattered light

    Get PDF
    This is the final version. Available from Oxford University Press via the DOI in this record. DATA AVAILABILITY: The data underlying this article will be shared on request to the corresponding author. The ALMA and VLT/SPHERE data are publicly available and can be queried and downloaded directly from the ALMA archive: https://almascience.nrao.edu/asax/ and the SPHERE archive: https://archive.eso.org/wdb/wdb/eso/sphere/.We show the first SPHERE/IRDIS and IFS data of the CO-rich debris disc around HD 131488. We use N-body simulations to model both the scattered light images and the spectral energy distribution of the disc in a self-consistent way. We apply the Henyey–Greenstein approximation, Mie theory, and the Discrete Dipole Approximation to model the emission of individual dust grains. Our study shows that only when gas drag is taken into account can we find a model that is consistent with scattered light as well as thermal emission data of the disc. The models suggest a gas surface density of 2 × 10−5 M⊕ au−2 which is in agreement with estimates from ALMA observations. Thus, our modelling procedure allows us to roughly constrain the expected amount of gas in a debris disc without actual gas measurements. We also show that the shallow size distribution of the dust leads to a significant contribution of large particles to the overall amount of scattered light. The scattering phase function indicates a dust porosity of ∼0.2…0.6 which is in agreement with a pebble pile scenario for planetesimal growth.Agence Nationale de la RechercheSwiss National Science Foundation (SNSF)CNR

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018

    Water in the terrestrial planet-forming zone of the PDS 70 disk

    Get PDF
    Terrestrial and sub-Neptune planets are expected to form in the inner (<10 <10~AU) regions of protoplanetary disks. Water plays a key role in their formation, although it is yet unclear whether water molecules are formed in-situ or transported from the outer disk. So far Spitzer Space Telescope observations have only provided water luminosity upper limits for dust-depleted inner disks, similar to PDS 70, the first system with direct confirmation of protoplanet presence. Here we report JWST observations of PDS 70, a benchmark target to search for water in a disk hosting a large (54 \sim54~AU) planet-carved gap separating an inner and outer disk. Our findings show water in the inner disk of PDS 70. This implies that potential terrestrial planets forming therein have access to a water reservoir. The column densities of water vapour suggest in-situ formation via a reaction sequence involving O, H2_2, and/or OH, and survival through water self-shielding. This is also supported by the presence of CO2_2 emission, another molecule sensitive to UV photodissociation. Dust shielding, and replenishment of both gas and small dust from the outer disk, may also play a role in sustaining the water reservoir. Our observations also reveal a strong variability of the mid-infrared spectral energy distribution, pointing to a change of inner disk geometry.Comment: To appear in Nature on 24 July 2023. 21 pages, 10 figures; includes extended data. Part of the JWST MINDS Guaranteed Time Observations program's science enabling products. Spectra downloadable on Zenodo at https://zenodo.org/record/799102
    corecore