6,445 research outputs found

    Cross sections for short pulse single and double ionization of helium

    Get PDF
    In a previous publication, procedures were proposed for unambiguously extracting amplitudes for single and double ionization from a time-dependent wavepacket by effectively propagating for an infinite time following a radiation pulse. Here we demonstrate the accuracy and utility of those methods for describing two-photon single and one-photon double ionization of helium. In particular it is shown how narrow features corresponding to autoionizing states are easily resolved with these methods.Comment: 9 pages, 9 figure

    Impact of internal gravity waves on the rotation profile inside pre-main sequence low-mass stars

    Full text link
    We study the impact of internal gravity waves (IGW), meridional circulation, shear turbulence, and stellar contraction on the internal rotation profile and surface velocity evolution of solar metallicity low-mass pre-main sequence stars. We compute a grid of rotating stellar evolution models with masses between 0.6 and 2.0Msun taking these processes into account for the transport of angular momentum, as soon as the radiative core appears and assuming no more disk-locking from that moment on.IGW generation along the PMS is computed taking Reynolds-stress and buoyancy into account in the bulk of the stellar convective envelope and convective core (when present). Redistribution of angular momentum within the radiative layers accounts for damping of prograde and retrograde IGW by thermal diffusivity and viscosity in corotation resonance. Over the whole mass range considered, IGW are found to be efficiently generated by the convective envelope and to slow down the stellar core early on the PMS. In stars more massive than ~ 1.6Msun, IGW produced by the convective core also contribute to angular momentum redistribution close to the ZAMS. Overall, IGW are found to significantly change the internal rotation profile of PMS low-mass stars.Comment: Accepted for publication in A&A (15 pages

    Thermohaline instability and rotation-induced mixing. III - Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars at various metallicities

    Full text link
    The availability of asteroseismic constraints for a large sample of stars from the missions CoRoT and Kepler paves the way for various statistical studies of the seismic properties of stellar populations. In this paper, we evaluate the impact of rotation-induced mixing and thermohaline instability on the global asteroseismic parameters at different stages of the stellar evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic Giant Branch to distinguish stellar populations. We present a grid of stellar evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and 0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relations, the frequency corresponding to the maximum oscillation power {\nu}_{max}, the maximal amplitude A_{max}, the asymptotic period spacing of g-modes, and different acoustic radii. We discuss the signature of rotation-induced mixing on the global asteroseismic quantities, that can be detected observationally. Thermohaline mixing whose effects can be identified by spectroscopic studies cannot be caracterized with the global seismic parameters studied here. But it is not excluded that individual mode frequencies or other well chosen asteroseismic quantities might help constraining this mixing.Comment: 15 pages, 11 figures, accepted for publication in A&

    New determination of abundances and stellar parameters for a set of weak G-band stars

    Full text link
    Weak G-band (wGb) stars are very peculiar red giants almost devoided of carbon and often mildly enriched in lithium. Despite their very puzzling abundance patterns, very few detailed spectroscopic studies existed up to a few years ago, preventing any clear understanding of the wGb phenomenon. We recently proposed the first consistent analysis of published data for 28 wGb stars and identified them as descendants of early A-type to late B-type stars, without being able to conclude on their evolutionary status or the origin of their peculiar abundance pattern. We used newly obtained high-resolution and high SNR spectra for 19 wGb stars in the southern and northern hemisphere to homogeneously derive their fundamental parameters, metallicities, as well as the spectroscopic abundances for Li, C, N, O, Na, Sr, and Ba. We also computed dedicated stellar evolution models that we used to determine the masses and to investigate the evolutionary status and chemical history of the stars in our sample. We confirm that the wGb stars are stars in the mass range 3.2 to 4.2 M⊙_\odot. We suggest that a large fraction could be mildly evolved stars on the SGB currently undergoing the 1st DUP, while a smaller number of stars are more probably in the core He burning phase at the clump. After analysing their abundance pattern, we confirm their strong N enrichment anti-correlated with large C depletion, characteristic of material fully processed through the CNO cycle to an extent not known in other evolved intermediate-mass stars. However, we demonstrate here that such a pattern is very unlikely due to self-enrichment. In the light of the current observational constraints, no solid self-consistent pollution scenario can be presented either, leaving the wGb puzzle largely unsolved.Comment: 19 pages , 14 figures, accepted for publication in Astronomy & Astrophysic

    In-situ steel solidification imaging in continuous casting using magnetic induction tomography

    Get PDF
    : Solidification process in continuous casting is a critical part of steel production. The speed and quality of the solidification process determines the quality of final product. Computational fluid dynamics (CFD) simulations are often used to describe the process and design of its control system, but so far, there is no any tool that provides an on-line measurement of the solidification front of hot steel during the continuous casting process. This paper presents a new tool based on magnetic induction tomography (MIT) for real time monitoring of this process. The new MIT system was installed at the end of the secondary cooling chamber of a casting unit and tested during several days in a real production process. MIT is able to create an internal map of electrical conductivity of hot steel deep inside the billet. The image of electrical conductivity is then converted to temperature profile that allows the measurement of the solid, mushy and liquid layers. In this study, such a conversion is done by synchronizing in one time step the MIT measurement and the thermal map generated with the actual process parameters available at that time. The MIT results were then compared with the results obtained of the CFD and thermal modelling of the industrial process. This is the first in-situ monitoring of the interior structure during a real continuous casting.The SHELL-THICK project has received funding from EU Research Fund for Coal and Steel under grant number 709830. This study reflects only the author's views and the European Commission is not responsible for any use that may be made of the information contained therein

    Chamber design of a portable breathalyzer for disease diagnosis

    Get PDF
    Breathalyzers allow, in a non-invasive way, to study the molecules present in the breath, enabling the diagnosis of some diseases due to the presence of low concentrations (ppb) of certain volatile organic compounds (VOCs). Developing these devices presents significant challenges, but the benefits of these techniques are tremendous, as they provide a noninvasive and cheaper diagnostic approach. The operation of these devices is simple; the patient only has to blow through a disposable mouthpiece into the measurement chamber, which houses the sensors that analyze the concentration of VOCs in individuals’ breath. Tomás Palacios group (Massachusetts Institute of Technology, Cambridge, United States) has built a graphene- based sensor array that can accurately measure the presence and concentration of different chemicals of interest. This bachelor’s thesis develops a chamber design that allows this sensor to be used as a portable breathalyzer for disease diagnosis. This system could provide a non-invasive, cheap and rapid approach to disease diagnosis. Although significant research has been done in this field over the years, none has focused on the optimal chamber design of these devices, which must optimize contact between sensors and air samples and address issues such as moisture, air velocity control, recirculation and turbulence. This work studies the airflow properties in different chamber models and creates, with a careful component selection, a reusable in situ breath analyzer design with the help of fluid mechanics simulations and experiments with the analysis sensors

    Charging of highly resistive granular metal films

    Full text link
    We have used the Scanning Kelvin probe microscopy technique to monitor the charging process of highly resistive granular thin films. The sample is connected to two leads and is separated by an insulator layer from a gate electrode. When a gate voltage is applied, charges enter from the leads and rearrange across the sample. We find very slow processes with characteristic charging times exponentially distributed over a wide range of values, resulting in a logarithmic relaxation to equilibrium. After the gate voltage has been switched off, the system again relaxes logarithmically slowly to the new equilibrium. The results cannot be explained with diffusion models, but most of them can be understood with a hopping percolation model, in which the localization length is shorter than the typical site separation. The technique is very promising for the study of slow phenomena in highly resistive systems and will be able to estimate the conductance of these systems when direct macroscopic measurement techniques are not sensitive enough.Comment: 8 pages, 7 figure

    Chromian spinels in the basalts from the Lisbon volcanic complex (portugal) and their petrogenetic implications

    Get PDF
    Chromian spinels are common in the late Cretaceous alkali basalts of the Lisbon volcanic Complex in Portugal. They occur as unzoned inclusions in magnesian olivines of all basalt types and as large spectacularly zoned grains in the groundmass of porphyritic basalts. Microprobe analysis indicate complex cationic exchange in the groundmass zoned spinels due to simple peritectic reactions and in response to changing composition of the basalt liquid. The variation of cationic distribution in zoned chromian-Spinels, reflects very accurately the changing chemistry of the cooling silicate melt and the paragenetical relations of mineral oxides and silicates. Crystallization of initial chromian spinels occurred at T~1200°C and fO2~10-8.5 atm. earlier or contemporaneously with magnesian olivine. The titanomagnetite mantles of zoned chromian spinels crystallized at T~1200°C and much lower fO2

    Vortices in a rotating BEC under extreme elongation

    Full text link
    We investigate a non-axisymmetric rotating BEC in a limit of rotation frequency for which the BEC transforms into a quasi-one-dimensional system. We compute the vortex lattice wavefunction by minimizing the Gross-Pitaevskii energy functional in the lowest Landau level approximation for different confinement potentials. The condensate typically presents a changing number of vortex rows as a function of the interaction strength or rotation-confinement ratio. More specifically, the vortex lattices can be classified into two classes according to their symmetry with respect to the longitudinal axis. These two classes correspond to different local minima of the energy functional and evolve independently as a function of the various parameters.Comment: 8 pages, 12 figure
    • …
    corecore