6,445 research outputs found
Cross sections for short pulse single and double ionization of helium
In a previous publication, procedures were proposed for unambiguously
extracting amplitudes for single and double ionization from a time-dependent
wavepacket by effectively propagating for an infinite time following a
radiation pulse. Here we demonstrate the accuracy and utility of those methods
for describing two-photon single and one-photon double ionization of helium. In
particular it is shown how narrow features corresponding to autoionizing states
are easily resolved with these methods.Comment: 9 pages, 9 figure
Impact of internal gravity waves on the rotation profile inside pre-main sequence low-mass stars
We study the impact of internal gravity waves (IGW), meridional circulation,
shear turbulence, and stellar contraction on the internal rotation profile and
surface velocity evolution of solar metallicity low-mass pre-main sequence
stars. We compute a grid of rotating stellar evolution models with masses
between 0.6 and 2.0Msun taking these processes into account for the transport
of angular momentum, as soon as the radiative core appears and assuming no more
disk-locking from that moment on.IGW generation along the PMS is computed
taking Reynolds-stress and buoyancy into account in the bulk of the stellar
convective envelope and convective core (when present). Redistribution of
angular momentum within the radiative layers accounts for damping of prograde
and retrograde IGW by thermal diffusivity and viscosity in corotation
resonance. Over the whole mass range considered, IGW are found to be
efficiently generated by the convective envelope and to slow down the stellar
core early on the PMS. In stars more massive than ~ 1.6Msun, IGW produced by
the convective core also contribute to angular momentum redistribution close to
the ZAMS. Overall, IGW are found to significantly change the internal rotation
profile of PMS low-mass stars.Comment: Accepted for publication in A&A (15 pages
Thermohaline instability and rotation-induced mixing. III - Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars at various metallicities
The availability of asteroseismic constraints for a large sample of stars
from the missions CoRoT and Kepler paves the way for various statistical
studies of the seismic properties of stellar populations. In this paper, we
evaluate the impact of rotation-induced mixing and thermohaline instability on
the global asteroseismic parameters at different stages of the stellar
evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic
Giant Branch to distinguish stellar populations. We present a grid of stellar
evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and
0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed
either with standard prescriptions or including both thermohaline convection
and rotation-induced mixing. For the whole grid we provide the usual stellar
parameters (luminosity, effective temperature, lifetimes, ...), together with
the global seismic parameters, i.e. the large frequency separation and
asymptotic relations, the frequency corresponding to the maximum oscillation
power {\nu}_{max}, the maximal amplitude A_{max}, the asymptotic period spacing
of g-modes, and different acoustic radii. We discuss the signature of
rotation-induced mixing on the global asteroseismic quantities, that can be
detected observationally. Thermohaline mixing whose effects can be identified
by spectroscopic studies cannot be caracterized with the global seismic
parameters studied here. But it is not excluded that individual mode
frequencies or other well chosen asteroseismic quantities might help
constraining this mixing.Comment: 15 pages, 11 figures, accepted for publication in A&
New determination of abundances and stellar parameters for a set of weak G-band stars
Weak G-band (wGb) stars are very peculiar red giants almost devoided of
carbon and often mildly enriched in lithium. Despite their very puzzling
abundance patterns, very few detailed spectroscopic studies existed up to a few
years ago, preventing any clear understanding of the wGb phenomenon. We
recently proposed the first consistent analysis of published data for 28 wGb
stars and identified them as descendants of early A-type to late B-type stars,
without being able to conclude on their evolutionary status or the origin of
their peculiar abundance pattern.
We used newly obtained high-resolution and high SNR spectra for 19 wGb stars
in the southern and northern hemisphere to homogeneously derive their
fundamental parameters, metallicities, as well as the spectroscopic abundances
for Li, C, N, O, Na, Sr, and Ba. We also computed dedicated stellar evolution
models that we used to determine the masses and to investigate the evolutionary
status and chemical history of the stars in our sample. We confirm that the wGb
stars are stars in the mass range 3.2 to 4.2 M. We suggest that a large
fraction could be mildly evolved stars on the SGB currently undergoing the 1st
DUP, while a smaller number of stars are more probably in the core He burning
phase at the clump. After analysing their abundance pattern, we confirm their
strong N enrichment anti-correlated with large C depletion, characteristic of
material fully processed through the CNO cycle to an extent not known in other
evolved intermediate-mass stars. However, we demonstrate here that such a
pattern is very unlikely due to self-enrichment. In the light of the current
observational constraints, no solid self-consistent pollution scenario can be
presented either, leaving the wGb puzzle largely unsolved.Comment: 19 pages , 14 figures, accepted for publication in Astronomy &
Astrophysic
In-situ steel solidification imaging in continuous casting using magnetic induction tomography
: Solidification process in continuous casting is a critical part of steel production. The speed and quality of the solidification process determines the quality of final product. Computational fluid dynamics (CFD) simulations are often used to describe the process and design of its control system, but so far, there is no any tool that provides an on-line measurement of the solidification front of hot steel during the continuous casting process. This paper presents a new tool based on magnetic induction tomography (MIT) for real time monitoring of this process. The new MIT system was installed at the end of the secondary cooling chamber of a casting unit and tested during several days in a real production process. MIT is able to create an internal map of electrical conductivity of hot steel deep inside the billet. The image of electrical conductivity is then converted to temperature profile that allows the measurement of the solid, mushy and liquid layers. In this study, such a conversion is done by synchronizing in one time step the MIT measurement and the thermal map generated with the actual process parameters available at that time. The MIT results were then compared with the results obtained of the CFD and thermal modelling of the industrial process. This is the first in-situ monitoring of the interior structure during a real continuous casting.The SHELL-THICK project has received funding from EU Research Fund for Coal and Steel under grant number 709830. This study reflects only the author's views and the European Commission is not responsible for any use that may be made of the information contained therein
Chamber design of a portable breathalyzer for disease diagnosis
Breathalyzers allow, in a non-invasive way, to study the
molecules present in the breath, enabling the diagnosis of some
diseases due to the presence of low concentrations (ppb) of
certain volatile organic compounds (VOCs). Developing these
devices presents significant challenges, but the benefits of these
techniques are tremendous, as they provide a noninvasive and
cheaper diagnostic approach. The operation of these devices is
simple; the patient only has to blow through a disposable
mouthpiece into the measurement chamber, which houses the
sensors that analyze the concentration of VOCs in individuals’
breath.
Tomás Palacios group (Massachusetts Institute of
Technology, Cambridge, United States) has built a graphene-
based sensor array that can accurately measure the presence
and concentration of different chemicals of interest. This
bachelor’s thesis develops a chamber design that allows this
sensor to be used as a portable breathalyzer for disease
diagnosis. This system could provide a non-invasive, cheap and
rapid approach to disease diagnosis. Although significant
research has been done in this field over the years, none has
focused on the optimal chamber design of these devices, which
must optimize contact between sensors and air samples and
address issues such as moisture, air velocity control,
recirculation and turbulence. This work studies the airflow
properties in different chamber models and creates, with a
careful component selection, a reusable in situ breath analyzer
design with the help of fluid mechanics simulations and
experiments with the analysis sensors
Charging of highly resistive granular metal films
We have used the Scanning Kelvin probe microscopy technique to monitor the
charging process of highly resistive granular thin films. The sample is
connected to two leads and is separated by an insulator layer from a gate
electrode. When a gate voltage is applied, charges enter from the leads and
rearrange across the sample. We find very slow processes with characteristic
charging times exponentially distributed over a wide range of values, resulting
in a logarithmic relaxation to equilibrium. After the gate voltage has been
switched off, the system again relaxes logarithmically slowly to the new
equilibrium. The results cannot be explained with diffusion models, but most of
them can be understood with a hopping percolation model, in which the
localization length is shorter than the typical site separation. The technique
is very promising for the study of slow phenomena in highly resistive systems
and will be able to estimate the conductance of these systems when direct
macroscopic measurement techniques are not sensitive enough.Comment: 8 pages, 7 figure
Chromian spinels in the basalts from the Lisbon volcanic complex (portugal) and their petrogenetic implications
Chromian spinels are common in the late Cretaceous alkali basalts of the Lisbon volcanic Complex in Portugal. They occur as unzoned inclusions in magnesian olivines of all basalt types and as large spectacularly zoned grains in the groundmass of porphyritic basalts. Microprobe analysis indicate complex cationic exchange in the groundmass zoned spinels due to simple peritectic reactions and in response to changing composition of the basalt liquid. The variation of cationic distribution in zoned chromian-Spinels, reflects very accurately the changing chemistry of the cooling silicate melt and the paragenetical relations of mineral oxides and silicates. Crystallization of initial chromian spinels occurred at T~1200°C and fO2~10-8.5 atm. earlier or contemporaneously with magnesian olivine. The titanomagnetite mantles of zoned chromian spinels crystallized at T~1200°C and much lower fO2
Vortices in a rotating BEC under extreme elongation
We investigate a non-axisymmetric rotating BEC in a limit of rotation
frequency for which the BEC transforms into a quasi-one-dimensional system. We
compute the vortex lattice wavefunction by minimizing the Gross-Pitaevskii
energy functional in the lowest Landau level approximation for different
confinement potentials. The condensate typically presents a changing number of
vortex rows as a function of the interaction strength or rotation-confinement
ratio. More specifically, the vortex lattices can be classified into two
classes according to their symmetry with respect to the longitudinal axis.
These two classes correspond to different local minima of the energy functional
and evolve independently as a function of the various parameters.Comment: 8 pages, 12 figure
- …