14 research outputs found

    Global prevalence and genotype distribution of hepatitis C virus infection in 2015 : A modelling study

    Get PDF
    Publisher Copyright: © 2017 Elsevier LtdBackground The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of—and expansion on—the 2014 analysis, which reported 80 million (95% CI 64–103) viraemic infections in 2013. Methods We developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data. Findings Models were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8–1·1) in 2015, corresponding to 71·1 million (62·5–79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively). Interpretation The global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections. Funding John C Martin Foundation.publishersversionPeer reviewe

    The present and future disease burden of hepatitis C virus (HCV) infections with today's treatment paradigm - volume 2

    No full text
    Morbidity and mortality attributable to chronic hepatitis C virus (HCV) infection are increasing in many countries as the infected population ages. Models were developed for 15 countries to quantify and characterize the viremic population, as well as estimate the number of new infections and HCV related deaths from 2013 to 2030. Expert consensus was used to determine current treatment levels and outcomes in each country. In most countries, viremic prevalence has already peaked. In every country studied, prevalence begins to decline before 2030, when current treatment levels were held constant. In contrast, cases of advanced liver disease and liver related deaths will continue to increase through 2030 in most countries. The current treatment paradigm is inadequate if large reductions in HCV related morbidity and mortality are to be achieved

    The present and future disease burden of hepatitis C virus (HCV) infections with today's treatment paradigm - volume 2

    No full text
    Morbidity and mortality attributable to chronic hepatitis C virus (HCV) infection are increasing in many countries as the infected population ages. Models were developed for 15 countries to quantify and characterize the viremic population, as well as estimate the number of new infections and HCV related deaths from 2013 to 2030. Expert consensus was used to determine current treatment levels and outcomes in each country. In most countries, viremic prevalence has already peaked. In every country studied, prevalence begins to decline before 2030, when current treatment levels were held constant. In contrast, cases of advanced liver disease and liver related deaths will continue to increase through 2030 in most countries. The current treatment paradigm is inadequate if large reductions in HCV related morbidity and mortality are to be achieve

    Historical epidemiology of hepatitis C virus (HCV) in select countries - volume 2

    No full text
    Chronic hepatitis C virus (HCV) infection is a leading cause of liver related morbidity and mortality. In many countries, there is a lack of comprehensive epidemiological data that are crucial in implementing disease control measures as new treatment options become available. Published literature, unpublished data and expert consensus were used to determine key parameters, including prevalence, viremia, genotype and the number of patients diagnosed and treated. In this study of 15 countries, viremic prevalence ranged from 0.13% in the Netherlands to 2.91% in Russia. The largest viremic populations were in India (8 666 000 cases) and Russia (4 162 000 cases). In most countries, males had a higher rate of infections, likely due to higher rates of injection drug use (IDU). Estimates characterizing the infected population are critical to focus screening and treatment efforts as new therapeutic options become availabl

    Strategies to manage hepatitis C virus (HCV) infection disease burden - volume 2

    No full text
    The hepatitis C virus (HCV) epidemic was forecasted through 2030 for 15 countries, and the relative impact of two scenarios was considered: (i) increased treatment efficacy while holding the treated population constant and (ii) increased treatment efficacy and increased annual treated population. Increasing levels of diagnosis and treatment, in combination with improved treatment efficacy, were critical for achieving substantial reductions in disease burden. In most countries, the annual treated population had to increase several fold to achieve the largest reductions in HCV-related morbidity and mortality. This suggests that increased capacity for screening and treatment will be critical in many countries. Birth cohort screening is a helpful tool for maximizing resources. In most of the studied countries, the majority of patients were born between 1945 and 198

    The case for simplifying and using absolute targets for viral hepatitis elimination goals

    No full text
    The 69th World Health Assembly endorsed the Global Health Sector Strategy for Viral Hepatitis, embracing a goal to eliminate hepatitis infection as a public health threat by 2030. This was followed by the World Health Organization's (WHO) global targets for the care and management of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. These announcements and targets were important in raising awareness and calling for action; however, tracking countries’ progress towards these elimination goals has provided insights to the limitations of these targets. The existing targets compare a country's progress relative to its 2015 values, penalizing countries who started their programmes prior to 2015, countries with a young population, or countries with a low prevalence. We recommend that (1) WHO simplify the hepatitis elimination targets, (2) change to absolute targets and (3) allow countries to achieve these disease targets with their own service coverage initiatives that will have the maximum impact. The recommended targets are as follows: reduce HCV new chronic cases to ≤5 per 100 000, reduce HBV prevalence among 1-year-olds to ≤0.1%, reduce HBV and HCV mortality to ≤5 per 100 000, and demonstrate HBV and HCV year-to-year decrease in new HCV- and HBV-related HCC cases. The objective of our recommendations is not to lower expectations or diminish the hepatitis elimination standards, but to provide clearer targets that recognize the past and current elimination efforts by countries, help measure progress towards true elimination, and motivate other countries to follow suit

    Historical epidemiology of hepatitis C virus (HCV) in select countries - volume 2

    No full text
    Chronic hepatitis C virus (HCV) infection is a leading cause of liver related morbidity and mortality. In many countries, there is a lack of comprehensive epidemiological data that are crucial in implementing disease control measures as new treatment options become available. Published literature, unpublished data and expert consensus were used to determine key parameters, including prevalence, viremia, genotype and the number of patients diagnosed and treated. In this study of 15 countries, viremic prevalence ranged from 0.13% in the Netherlands to 2.91% in Russia. The largest viremic populations were in India (8666000 cases) and Russia (4162000 cases). In most countries, males had a higher rate of infections, likely due to higher rates of injection drug use (IDU). Estimates characterizing the infected population are critical to focus screening and treatment efforts as new therapeutic options become available
    corecore