51 research outputs found

    Phase Space Analysis of Quintessence Cosmologies with a Double Exponential Potential

    Full text link
    We use phase space methods to investigate closed, flat, and open Friedmann-Robertson-Walker cosmologies with a scalar potential given by the sum of two exponential terms. The form of the potential is motivated by the dimensional reduction of M-theory with non-trivial four-form flux on a maximally symmetric internal space. To describe the asymptotic features of run-away solutions we introduce the concept of a `quasi fixed point.' We give the complete classification of solutions according to their late-time behavior (accelerating, decelerating, crunch) and the number of periods of accelerated expansion.Comment: 46 pages, 5 figures; v2: minor changes, references added; v3: title changed, refined classification of solutions, 3 references added, version which appeared in JCA

    Transiting exoplanets from the CoRoT space mission III. The spectroscopic transit of CoRoT-Exo-2b with SOPHIE and HARPS

    Get PDF
    We report on the spectroscopic transit of the massive hot-Jupiter CoRoT-Exo-2b observed with the high-precision spectrographs SOPHIE and HARPS. By modeling the radial velocity anomaly occurring during the transit due to the Rossiter-McLaughlin (RM) effect, we determine the sky-projected angle between the stellar spin and the planetary orbital axis to be close to zero lambda=7.2+-4.5 deg, and we secure the planetary nature of CoRoT-Exo-2b. We discuss the influence of the stellar activity on the RM modeling. Spectral analysis of the parent star from HARPS spectra are presented.Comment: A&A Letters (in press), 5 pages, 2 figure

    The pd <--> pi+ t reaction around the Delta resonance

    Full text link
    The pd pi+ t process has been calculated in the energy region around the Delta-resonance with elementary production/absorption mechanisms involving one and two nucleons. The isobar degrees of freedom have been explicitly included in the two-nucleon mechanism via pi-- and rho-exchange diagrams. No free parameters have been employed in the analysis since all the parameters have been fixed in previous studies on the simpler pp pi+ d process. The treatment of the few-nucleon dynamics entailed a Faddeev-based calculation of the reaction, with continuum calculations for the initial p-d state and accurate solutions of the three-nucleon bound-state equation. The integral cross-section was found to be quite sensitive to the NN interaction employed while the angular dependence showed less sensitivity. Approximately a 4% effect was found for the one-body mechanism, for the three-nucleon dynamics in the p-d channel, and for the inclusion of a large, possibly converged, number of three-body partial states, indicating that these different aspects are of comparable importance in the calculation of the spin-averaged observables.Comment: 40 Pages, RevTex, plus 5 PostScript figure

    Population structure of the malaria vector Anopheles moucheti in the equatorial forest region of Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles moucheti </it>is a major malaria vector in forested areas of Africa. However, despite its important epidemiological role, it remains poorly known and insufficiently studied. Here, levels of genetic differentiation were estimated between different <it>A. moucheti </it>populations sampled throughout its distribution range in Central Africa.</p> <p>Methods</p> <p>Polymorphism at ten microsatellite markers was compared in mosquitoes sampled in Cameroon, the Democratic Republic of Congo and an island on Lake Victoria in Uganda. Microsatellite data were used to estimate genetic diversity within populations, their relative long-term effective population size, and the level of genetic differentiation between them.</p> <p>Results</p> <p>All specimens collected in Tsakalakuku (Democratic Republic of Congo) were identified as <it>A. m. bervoetsi </it>while other samples consisted of <it>A. m. moucheti</it>. Successful amplification was obtained at all microsatellite loci within all <it>A. m. moucheti </it>samples while only six loci amplified in <it>A. m. bervoetsi</it>. Allelic richness and heterozygosity were high for all populations except the island population of Uganda and <it>A. m. bervoetsi</it>. High levels of genetic differentiation were recorded between <it>A. m. bervoetsi </it>and each <it>A. m. moucheti </it>sample as well as between the island population of <it>A. m. moucheti </it>and mainland populations. Significant isolation by distance was evidenced between mainland populations.</p> <p>Conclusion</p> <p>High levels of genetic differentiation supports complete speciation of <it>A. m. bervoetsi </it>which should henceforth be recognized as a full species and named <it>A. bervoetsi</it>. Isolation by distance is the main force driving differentiation between mainland populations of <it>A. m. moucheti</it>. Genetically and geographically isolated populations exist on Lake Victoria islands, which might serve as relevant field sites for evaluation of innovative vector control strategies.</p

    SEMICONDUCTING GRAPHENE

    No full text

    Picosecond spectroscopy of electronically excited singlet states in biphenylene

    Get PDF
    A photophys. properties of biphenylene-h8 and biphenylene-d8 in soln. at room temp. was investigated with picosecond absorption and fluorescence spectroscopy. The weak fluorescence with complex vibrational structure originates entirely from the S1 state. It decays monoexponentially with a lifetime of 240 +- 20 ps. Upon photoexcitation to S2 no emission attributable to the S2 state was obsd. Lifetime and quantum yield of fluorescence (FF = 2.3 * 10-4) are the same for biphenylene-h8 and for the completely deuterated compd., indicating the C-H vibrations are not involved in the major radiationless decay process of the S1 level, i.e. internal conversion (jIC > 0.99). This conclusion is supported by INDO/S CI calcns. where strong changes of the CC bond orders (particularly in the central C4 ring) with S0 -> S1 excitation are found. The time-resolved excited-state absorption, measured at several wavelengths, decays biexponentially with time consts. of 8 +- 3 and 250 +- 40 ps. Various interpretations of the 8 ps lifetime are discussed; the conclusion results that the 8 ps transient has to be assigned to the lifetime of the S2 state even though the emission expected for an allowed transition with such a long lifetime is not obsd. Strong S1 -> Sn and S2 -> Sn excited-state absorption is found as predicted by INDO/S calcns
    corecore