14 research outputs found
Acute Radiation Syndrome-related gene expression in irradiated peripheral blood cell populations.
PURPOSE: In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish the worried well from low-exposed and those individuals who may later develop life-threatening hematologic acute radiation syndrome (H-ARS). In previous studies, we identified and validated genes in peripheral blood for this purpose. To gain a deeper understanding and to make methodological improvements, we examined the contribution of the peripheral blood´s cell populations on radiation-induced gene expression changes. MATERIALS AND METHODS: EDTA whole blood from six healthy donors was X-irradiated with 0 and 4 Gy, cultured in vitro for 24 h and cell populations of T-lymphocytes (CD3), B-lymphocytes (CD19), NK-cells (CD56) and granulocytes (CD15) were separated using immunomagnetic methods. Whole blood was used as a positive control to ensure the expected radiation-induced gene expression response based on previous examinations. Purity of cell separation and cell counts was validated using immunofluorescence imaging flow cytometry. After RNA isolation, gene expressions of FDXR, DDB2, POU2AF1 and WNT3 were examined in the cell populations and whole blood. RESULTS: The cell populations, on average, contributed to the total RNA amount with a ratio of 11.6 for T-lymphocytes: 1.2 for B-cells: 1.2 for NK-cells: 1.0 for granulocytes. In order to estimate the contribution of gene expression per cell population, the baseline (0 Gy) as well as the radiation-induced fold-change in gene expression relative to unexposed was considered for each gene. After considering all three parameters, the T-lymphocytes (74.8%/80.5%) contributed predominantly to the radiation-induced up-regulation observed for FDXR/DDB2 and the B-lymphocytes (97.1%/83.8%) for down-regulated POU2AF1/WNT3 with a similar effect on whole blood gene expression measurements reflecting a corresponding order of magnitude. CONCLUSIONS: T-lymphocytes and B-lymphocytes contributed predominantly to the radiation-induced up-regulation of FDXR/DDB2 and down-regulation of POU2AF1/WNT3. Further separation of cell populations will not increase the diagnostic sensitivity, but complicate an efficient workflow. Also, this study identifies undesired limitations of widely used whole blood in vitro models, but it still underlines the use of FDXR and DDB2 for biodosimetry purposes and POU2AF1 and WNT3 for effect prediction of acute health effects
Utility of gene expression studies in relation to radiation exposure and clinical outcomes: Thyroid cancer in the Ukrainian-American cohort and late health effects in a MAYAK worker cohort.
Purpose: We herein report on changes in gene expression after radiation exposure to iodine-131 from the Chernobyl accident in the Ukrainian-American thyroid cohort and to external gamma ray or internal plutonium exposure in the Mayak Production Association radiation workers. Materials and methods: Taking advantage of access to tissue samples from the thyroid cancer cases in the Ukrainian-American cohort, our group tried to identify candidate genes to discriminate spontaneously occurring thyroid cancers from thyroid cancers caused by radiation exposure. We also examined gene expression changes in normal and cancerous thyroid tissue in relation to iodine-131 dose separately. Gene expression changes in the peripheral blood of radiation exposed Mayak workers were examined to elucidate the dose-to-gene and gene-to-health (e.g. cardiovascular disease) relationships. Conclusions: Results of both projects are discussed under the aspect of dose-response relationships (dose-to-gene) and clinical outcome relationships (gene-to-effect) in light of how mechanistic data can be translated into actionable knowledge for radiation protection or clinical purposes
Examining potential confounding factors in gene expression analysis of human saliva and identifying potential housekeeping genes
Isolation of RNA from whole saliva, a non-invasive and easily accessible biofluid that is an attractive alternative to blood for high-throughput biodosimetry of radiological/nuclear victims might be of clinical significance for prediction and diagnosis of disease. In a previous analysis of 12 human samples we identified two challenges to measuring gene expression from total RNA: (1) the fraction of human RNA in whole saliva was low and (2) the bacterial contamination was overwhelming. To overcome these challenges, we performed selective cDNA synthesis for human RNA species only by employing poly(A)+-tail primers followed by qRT-PCR. In the current study, this approach was independently validated on 91 samples from 61 healthy donors. Additionally, we used the ratio of human to bacterial RNA to adjust the input RNA to include equal amounts of human RNA across all samples before cDNA synthesis, which then ensured comparable analysis using the same base human input material. Furthermore, we examined relative levels of ten known housekeeping genes, and assessed inter- and intra-individual differences in 61 salivary RNA isolates, while considering effects of demographical factors (e.g. sex, age), epidemiological factors comprising social habits (e.g. alcohol, cigarette consumption), oral hygiene (e.g. flossing, mouthwash), previous radiological diagnostic procedures (e.g. number of CT-scans) and saliva collection time (circadian periodic). Total human RNA amounts appeared significantly associated with age only (P <= 0.02). None of the chosen housekeeping genes showed significant circadian periodicity and either did not associate or were weakly associated with the 24 confounders examined, with one exception, 60% of genes were altered by mouthwash. ATP6, ACTB and B2M represented genes with the highest mean baseline expression (Ct-values <= 30) and were detected in all samples. Combining these housekeeping genes for normalization purposes did not decrease inter-individual variance, but increased the robustness. In summary, our work addresses critical confounders and provides important information for the successful examination of gene expression in human whole saliva
Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5–40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 °C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5–8 h varying exposure times; second: varying dose rates of 0.5–8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in ≥ 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 °C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 °C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 °C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation
RENEB Inter-Laboratory Comparison 2021: Inter-Assay Comparison of Eight Dosimetry Assays
10.1667/RADE-22-00207.1Radiation Research1996535-55