563 research outputs found
Simulation of merging binary neutron stars in full general relativity: case
We have performed 3D numerical simulations for merger of equal mass binary
neutron stars in full general relativity. We adopt a -law equation of
state in the form where P, , \varep and
are the pressure, rest mass density, specific internal energy, and the
adiabatic constant with . As initial conditions, we adopt models of
corotational and irrotational binary neutron stars in a quasi-equilibrium state
which are obtained using the conformal flatness approximation for the three
geometry as well as an assumption that a helicoidal Killing vector exists. In
this paper, we pay particular attention to the final product of the
coalescence. We find that the final product depends sensitively on the initial
compactness parameter of the neutron stars : In a merger between sufficiently
compact neutron stars, a black hole is formed in a dynamical timescale. As the
compactness is decreased, the formation timescale becomes longer and longer. It
is also found that a differentially rotating massive neutron star is formed
instead of a black hole for less compact binary cases, in which the rest mass
of each star is less than 70-80% of the maximum allowed mass of a spherical
star. In the case of black hole formation, we roughly evaluate the mass of the
disk around the black hole. For the merger of corotational binaries, a disk of
mass may be formed, where M_* is the total rest mass of the
system. On the other hand, for the merger of irrotational binaries, the disk
mass appears to be very small : < 0.01M_*.Comment: 27 pages, to appear in Phys. Rev.
Excitation of the odd-parity quasi-normal modes of compact objects
The gravitational radiation generated by a particle in a close unbounded
orbit around a neutron star is computed as a means to study the importance of
the modes of the neutron star. For simplicity, attention is restricted to
odd parity (``axial'') modes which do not couple to the neutron star's fluid
modes. We find that for realistic neutron star models, particles in unbounded
orbits only weakly excite the modes; we conjecture that this is also the
case for astrophysically interesting sources of neutron star perturbations. We
also find that for cases in which there is significant excitation of quadrupole
modes, there is comparable excitation of higher multipole modes.Comment: 18 pages, 21 figures, submitted to Phys. Rev.
Relativistic neutron star merger simulations with non-zero temperature equations of state I. Variation of binary parameters and equation of state
An extended set of binary neutron star (NS) merger simulations is performed
with an approximative conformally flat treatment of general relativity to
systematically investigate the influence of the nuclear equation of state
(EoS), the neutron star masses, and the NS spin states prior to merging. We
employ the two non-zero temperature EoSs of Shen et al. (1998a,b) and Lattimer
& Swesty (1991). In addition, we use the cold EoS of Akmal et al. (1998) with a
simple ideal-gas-like extension according to Shibata & Taniguchi (2006), and an
ideal-gas EoS with parameters fitted to the supernuclear part of the Shen-EoS.
We estimate the mass sitting in a dilute high-angular momentum ``torus'' around
the future black hole (BH). The dynamics and outcome of the models is found to
depend strongly on the EoS and on the binary parameters. Larger torus masses
are found for asymmetric systems (up to ~0.3 M_sun for a mass ratio of 0.55),
for large initial NSs, and for a NS spin state which corresponds to a larger
total angular momentum. We find that the postmerger remnant collapses either
immediately or after a short time when employing the soft EoS of Lattimer&
Swesty, whereas no sign of post-merging collapse is found within tens of
dynamical timescales for all other EoSs used. The typical temperatures in the
torus are found to be about 3-10 MeV depending on the strength of the shear
motion at the collision interface between the NSs and thus depending on the
initial NS spins. About 10^{-3}-10^{-2} M_sun of NS matter become
gravitationally unbound during or right after the merging process. This matter
consists of a hot/high-entropy component from the collision interface and (only
in case of asymmetric systems) of a cool/low-entropy component from the spiral
arm tips. (abridged)Comment: 20 pages, 15 figures, accepted for publication in A&A, included
changes based on referee comment
Stable Topologies of Event Horizon
In our previous work, it was shown that the topology of an event horizon (EH)
is determined by the past endpoints of the EH. A torus EH (the collision of two
EH) is caused by the two-dimensional (one-dimensional) set of the endpoints. In
the present article, we examine the stability of the topology of the EH. We see
that a simple case of a single spherical EH is unstable. Furthermore, in
general, an EH with handles (a torus, a double torus, ...) is structurally
stable in the sense of catastrophe theory.Comment: 21 pages, revtex, five figures containe
Matter flows around black holes and gravitational radiation
We develop and calibrate a new method for estimating the gravitational
radiation emitted by complex motions of matter sources in the vicinity of black
holes. We compute numerically the linearized curvature perturbations induced by
matter fields evolving in fixed black hole backgrounds, whose evolution we
obtain using the equations of relativistic hydrodynamics. The current
implementation of the proposal concerns non-rotating holes and axisymmetric
hydrodynamical motions. As first applications we study i) dust shells falling
onto the black hole isotropically from finite distance, ii) initially spherical
layers of material falling onto a moving black hole, and iii) anisotropic
collapse of shells. We focus on the dependence of the total gravitational wave
energy emission on the flow parameters, in particular shell thickness, velocity
and degree of anisotropy. The gradual excitation of the black hole quasi-normal
mode frequency by sufficiently compact shells is demonstrated and discussed. A
new prescription for generating physically reasonable initial data is
discussed, along with a range of technical issues relevant to numerical
relativity.Comment: 27 pages, 12 encapsulated figures, revtex, amsfonts, submitted to
Phys. Rev.
Gravitational waves from a test particle scattered by a neutron star: Axial mode case
Using a metric perturbation method, we study gravitational waves from a test
particle scattered by a spherically symmetric relativistic star. We calculate
the energy spectrum and the waveform of gravitational waves for axial modes.
Since metric perturbations in axial modes do not couple to the matter fluid of
the star, emitted waves for a normal neutron star show only one peak in the
spectrum, which corresponds to the orbital frequency at the turning point,
where the gravitational field is strongest. However, for an ultracompact star
(the radius ), another type of resonant periodic peak appears in
the spectrum. This is just because of an excitation by a scattered particle of
axial quasinormal modes, which were found by Chandrasekhar and Ferrari. This
excitation comes from the existence of the potential minimum inside of a star.
We also find for an ultracompact star many small periodic peaks at the
frequency region beyond the maximum of the potential, which would be due to a
resonance of two waves reflected by two potential barriers (Regge-Wheeler type
and one at the center of the star). Such resonant peaks appear neither for a
normal neutron star nor for a Schwarzschild black hole. Consequently, even if
we analyze the energy spectrum of gravitational waves only for axial modes, it
would be possible to distinguish between an ultracompact star and a normal
neutron star (or a Schwarzschild black hole).Comment: 21 pages, revtex, 11 figures are attached with eps files Accepted to
Phys. Rev.
Unusual magnetic-field dependence of partially frustrated triangular ordering in manganese tricyanomethanide
Manganese tricyanomethanide, Mn[C(CN)3]2, consists of two interpenetrating
three-dimensional rutile-like networks. In each network, the tridentate C(CN)3-
anion gives rise to superexchange interactions between the Mn2+ ions (S=5/2)
that can be mapped onto the "row model" for partially frustrated triangular
magnets. We present heat capacity measurements that reveal a phase transition
at T_N = 1.18K, indicative of magnetic ordering. The zero-field magnetically
ordered structure was solved from neutron powder diffraction data taken between
0.04 and 1.2 K. It consists of an incommensurate spiral with a temperature
independent propagation vector Q=(2Q 0 0)=(+/-0.622 0 0), where different signs
relate to the two different networks. This corresponds to (+/-0.311 +/-0.311 0)
in a quasi-hexagonal representation. The ordered moment mu=3.3mu_B is about 2/3
of the full Mn2+ moment. From the values of T_N and Q, the exchange parameters
J/k = 0.15 K and J'/J = 0.749 are estimated. The magnetic-field dependence of
the intensity of the Bragg reflection, measured for external fields
H||Q, indicates the presence of three different magnetic phases. We associate
them with the incommensurate spiral (H < 13.5 kOe), an intermediate phase (13.5
kOe 16 kOe)
proposed for related compounds. For increasing fields, Q continuously
approaches the value 1/3, corresponding to the commensurate magnetic structure
of the fully frustrated triangular lattice. This value is reached at H_c = 19
kOe. At this point, the field-dependence reverses and Q adopts a value of 0.327
at 26 kOe, the highest field applied in the experiment. Except for H_c, the
magnetic ordering is incommensurate in all three magnetic phases of
Mn[C(CN)3]2.Comment: accepted for publication in J. Phys.: Condens. Matte
- …