152 research outputs found
Nuclear localised more sulphur accumulation1 epigenetically regulates sulphur homeostasis in Arabidopsis thaliana
Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over- accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation
Growth Performance and Root Transcriptome Remodeling of Arabidopsis in Response to Mars-Like Levels of Magnesium Sulfate
Martian regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. at 180 min. after initiation of treatment. mutants exhibit partial tolerance to magnesium sulfate, and by elucidating a small subset (500 vs. >10,000) of candidate genes for mutation or metabolic engineering that will enhance tolerance to magnesium sulfate soils
A Systems Approach Uncovers Restrictions for Signal Interactions Regulating Genome-wide Responses to Nutritional Cues in Arabidopsis
As sessile organisms, plants must cope with multiple and combined variations of signals in their environment. However, very few reports have studied the genome-wide effects of systematic signal combinations on gene expression. Here, we evaluate a high level of signal integration, by modeling genome-wide expression patterns under a factorial combination of carbon (C), light (L), and nitrogen (N) as binary factors in two organs (O), roots and leaves. Signal management is different between C, N, and L and in shoots and roots. For example, L is the major factor controlling gene expression in leaves. However, in roots there is no obvious prominent signal, and signal interaction is stronger. The major signal interaction events detected genome wide in Arabidopsis roots are deciphered and summarized in a comprehensive conceptual model. Surprisingly, global analysis of gene expression in response to C, N, L, and O revealed that the number of genes controlled by a signal is proportional to the magnitude of the gene expression changes elicited by the signal. These results uncovered a strong constraining structure in plant cell signaling pathways, which prompted us to propose the existence of a “code” of signal integration
Area 5 Influences Excitability within the Primary Motor Cortex in Humans
In non-human primates, Brodmann's area 5 (BA 5) has direct connectivity with primary motor cortex (M1), is largely dedicated to the representation of the hand and may have evolved with the ability to perform skilled hand movement. Less is known about human BA 5 and its interaction with M1 neural circuits related to hand control. The present study examines the influence of BA 5 on excitatory and inhibitory neural circuitry within M1 bilaterally before and after continuous (cTBS), intermittent (iTBS), and sham theta-burst stimulation (sham TBS) over left hemisphere BA 5. Using single and paired-pulse TMS, measurements of motor evoked potentials (MEPs), short interval intracortical inhibition (SICI), and intracortical facilitation (ICF) were quantified for the representation of the first dorsal interosseous muscle. Results indicate that cTBS over BA 5 influences M1 excitability such that MEP amplitudes are increased bilaterally for up to one hour. ITBS over BA 5 results in an increase in MEP amplitude contralateral to stimulation with a delayed onset that persists up to one hour. SICI and ICF were unaltered following TBS over BA 5. Similarly, F-wave amplitude and latency were unaltered following cTBS over BA 5. The data suggest that BA 5 alters M1 output directed to the hand by influencing corticospinal neurons and not interneurons that mediate SICI or ICF circuitry. Targeting BA 5 via cTBS and iTBS is a novel mechanism to powerfully modulate activity within M1 and may provide an avenue for investigating hand control in healthy populations and modifying impaired hand function in clinical populations
A transcriptional reference map of defence hormone responses in potato
Phytohormones are involved in diverse aspects of plant life including the regulation of plant growth, development and reproduction, as well as governing biotic and abiotic stress responses. We have generated a comprehensive transcriptional reference map of the early potato responses to exogenous application of the defence hormones abscisic acid, brassinolides (applied as epibrassinolide), ethylene (applied as the ethylene precursor aminocyclopropanecarboxylic acid), salicylic acid and jasmonic acid (applied as methyl jasmonate). Of the 39000 predicted genes on the microarray, a total of 2677 and 2473 genes were significantly differentially expressed at 1 h and 6 h after hormone treatment, respectively. Specific marker genes newly identified for the early hormone responses in potato include: a homeodomain 20 transcription factor (DMG400000248) for abscisic acid; a SAUR gene (DMG400016561) induced in epibrassinolide treated plants; an osmotin gene (DMG400003057) specifically enhanced by aminocyclopropanecarboxylic acid; a gene weakly similar to AtWRKY40 (DMG402007388) that was induced by salicylic acid; and a jasmonate ZIM-domain protein 1 (DMG400002930) which was specifically activated by methyl jasmonate. An online database has been set up to query the expression patterns of potato genes represented on the microarray that can also incorporate future microarray or RNAseq-based expression studies
Lazarus1, a DUF300 Protein, Contributes to Programmed Cell Death Associated with Arabidopsis acd11 and the Hypersensitive Response
Programmed cell death (PCD) is a necessary part of the life of multi-cellular organisms. A type of plant PCD is the defensive hypersensitive response (HR) elicited via recognition of a pathogen by host resistance (R) proteins. The lethal, recessive accelerated cell death 11 (acd11) mutant exhibits HR-like accelerated cell death, and cell death execution in acd11 shares genetic requirements for HR execution triggered by one subclass of R proteins
Heavy reliance on plants for Romanian cave bears evidenced by amino acid nitrogen isotope analysis
Heavy reliance on plants is rare in Carnivora and mostly limited to relatively small species in subtropical settings. The feeding behaviors of extinct cave bears living during Pleistocene cold periods at middle latitudes have been intensely studied using various approaches including isotopic analyses of fossil collagen. In contrast to cave bears from all other regions in Europe, some individuals from Romania show exceptionally high δ15N values that might be indicative of meat consumption. Herbivory on plants with high δ15N values cannot be ruled out based on this method, however. Here we apply an approach using the δ15N values of individual amino acids from collagen that offsets the baseline δ15N variation among environments. The analysis yielded strong signals of reliance on plants for Romanian cave bears based on the δ15N values of glutamate and phenylalanine. These results could suggest that the high variability in bulk collagen δ15N values observed among cave bears in Romania reflects niche partitioning but in a general trophic context of herbivory
- …