152 research outputs found

    Variation in ligand responses of the bitter taste receptors TAS2R1 and TAS2R4 among New World monkeys.

    Get PDF
    BACKGROUND: New World monkeys (NWMs) are unique in that they exhibit remarkable interspecific variation in color vision and feeding behavior, making them an excellent model for studying sensory ecology. However, it is largely unknown whether non-visual senses co-vary with feeding ecology, especially gustation, which is expected to be indispensable in food selection. Bitter taste, which is mediated by bitter taste receptors (TAS2Rs) in the tongue, helps organisms avoid ingesting potentially toxic substances in food. In this study, we compared the ligand sensitivities of the TAS2Rs of five species of NWMs by heterologous expression in HEK293T cells and calcium imaging. RESULTS: We found that TAS2R1 and TAS2R4 orthologs differ in sensitivity among the NWM species for colchicine and camphor, respectively. We then reconstructed the ancestral receptors of NWM TAS2R1 and TAS2R4, measured the evolutionary shift in ligand sensitivity, and identified the amino acid replacement at residue 62 as responsible for the high sensitivity of marmoset TAS2R4 to colchicine. CONCLUSIONS: Our results provide a basis for understanding the differences in feeding ecology among NWMs with respect to bitter taste

    Endoscopy in the Diagnosis of Small Intestinal Tumors

    Get PDF
    The importance of endoscopy in the diagnosis of small intestinal tumors was evaluated in 15 patients with small intestinal tumors treated in our hospital. Two tumors were benign, and 13 were malignant (carcinoma in 5 patients, malignant lymphoma in 5 and leiomyosarcoma in 3). The presence of lesions could be determined by X-rays before surgery, but definitive diagnoses were difficult. When preoperative endoscopy of the small intestine was possible accurate preoperative diagnoses could be made based on the endoscopic findings and biopsies taken under direct vision. Endoscopy is therefore very important for the diagnosis of small intestinal tumors. It is necessary to develop small intestinal endoscopes that are easier to insert

    Genetic diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) colonizing sweet potato and cassava in South Sudan

    Get PDF
    Open Access Journal; Published online: 17 Jan 2020Bemisia tabaci (Gennadius) is a polyphagous, highly destructive pest that is capable of vectoring viruses in most agricultural crops. Currently, information regarding the distribution and genetic diversity of B. tabaci in South Sudan is not available. The objectives of this study were to investigate the genetic variability of B. tabaci infesting sweet potato and cassava in South Sudan. Field surveys were conducted between August 2017 and July and August 2018 in 10 locations in Juba County, Central Equatoria State, South Sudan. The sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) were used to determine the phylogenetic relationships between sampled B. tabaci. Six distinct genetic groups of B. tabaci were identified, including three non-cassava haplotypes (Mediterranean (MED), Indian Ocean (IO), and Uganda) and three cassava haplotypes (Sub-Saharan Africa 1 sub-group 1 (SSA1-SG1), SSA1-SG3, and SSA2). MED predominated on sweet potato and SSA2 on cassava in all of the sampled locations. The Uganda haplotype was also widespread, occurring in five of the sampled locations. This study provides important information on the diversity of B. tabaci species in South Sudan. A comprehensive assessment of the genetic diversity, geographical distribution, population dynamics, and host range of B. tabaci species in South Sudan is vital for its effective management

    Characterization of the Modes of Binding between Human Sweet Taste Receptor and Low-Molecular-Weight Sweet Compounds

    Get PDF
    One of the most distinctive features of human sweet taste perception is its broad tuning to chemically diverse compounds ranging from low-molecular-weight sweeteners to sweet-tasting proteins. Many reports suggest that the human sweet taste receptor (hT1R2–hT1R3), a heteromeric complex composed of T1R2 and T1R3 subunits belonging to the class C G protein–coupled receptor family, has multiple binding sites for these sweeteners. However, it remains unclear how the same receptor recognizes such diverse structures. Here we aim to characterize the modes of binding between hT1R2–hT1R3 and low-molecular-weight sweet compounds by functional analysis of a series of site-directed mutants and by molecular modeling–based docking simulation at the binding pocket formed on the large extracellular amino-terminal domain (ATD) of hT1R2. We successfully determined the amino acid residues responsible for binding to sweeteners in the cleft of hT1R2 ATD. Our results suggest that individual ligands have sets of specific residues for binding in correspondence with the chemical structures and other residues responsible for interacting with multiple ligands

    Heterozygous Mutation of Drosophila Opa1 Causes the Development of Multiple Organ Abnormalities in an Age-Dependent and Organ-Specific Manner

    Get PDF
    Optic Atrophy 1 (OPA1) is a ubiquitously expressed dynamin-like GTPase in the inner mitochondrial membrane. It plays important roles in mitochondrial fusion, apoptosis, reactive oxygen species (ROS) and ATP production. Mutations of OPA1 result in autosomal dominant optic atrophy (DOA). The molecular mechanisms by which link OPA1 mutations and DOA are not fully understood. Recently, we created a Drosophila model to study the pathogenesis of optic atrophy. Heterozygous mutation of Drosophila OPA1 (dOpa1) by P-element insertion results in no obvious morphological abnormalities, whereas homozygous mutation is embryonic lethal. In eye-specific somatic clones, homozygous mutation of dOpa1 causes rough (mispatterning) and glossy (decreased lens deposition) eye phenotypes in adult Drosophila. In humans, heterozygous mutations in OPA1 have been associated with mitochondrial dysfunction, which is predicted to affect multiple organs. In this study, we demonstrated that heterozygous dOpa1 mutation perturbs the visual function and an ERG profile of the Drosophila compound eye. We independently showed that antioxidants delayed the onset of mutant phenotypes in ERG and improved larval vision function in phototaxis assay. Furthermore, heterozygous dOpa1 mutation also caused decreased heart rate, increased heart arrhythmia, and poor tolerance to stress induced by electrical pacing. However, antioxidants had no effects on the dysfunctional heart of heterozygous dOpa1 mutants. Under stress, heterozygous dOpa1 mutations caused reduced escape response, suggesting abnormal function of the skeletal muscles. Our results suggest that heterozygous mutation of dOpa1 shows organ-specific pathogenesis and is associated with multiple organ abnormalities in an age-dependent and organ-specific manner

    Establishment of a New Cell-Based Assay To Measure the Activity of Sweeteners in Fluorescent Food Extracts

    Get PDF
    Taste receptors have been defined at the molecular level in the past decade, and cell-based assays have been developed using cultured cells heterologously expressing these receptors. The most popular approach to detecting the cellular response to a tastant is to measure changes in intracellular Ca2+ concentration using Ca2+-sensitive fluorescent dyes. However, this method cannot be applied to food-derived samples that contain fluorescent substances. To establish an assay system that would be applicable to fluorescent samples, we tested the use of Ca2+-sensitive photoproteins, such as aequorin and mitochondrial clytin-II, as Ca2+ indicators in a human sweet taste receptor assay. Using these systems, we successfully detected receptor activation in response to sweetener, even when fluorescent compounds coexisted. This luminescence-based assay will be a powerful tool to objectively evaluate the sweetness of food-derived samples even at an industry level

    Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibody-dependent cellular cytotoxicity (ADCC) has recently been identified as one of the critical mechanisms underlying the clinical efficacy of therapeutic antibodies, especially anticancer antibodies. Therapeutic antibodies fully lacking the core fucose of the Fc oligosaccharides have been found to exhibit much higher ADCC in humans than their fucosylated counterparts. However, data which show how fully non-fucosylated antibodies achieve such a high ADCC in human whole blood have not yet been disclosed. The precise mechanisms responsible for the high ADCC mediated by fully non-fucosylated therapeutic antibodies, even in the presence of human plasma, should be explained based on direct evidence of non-fucosylated antibody action in human blood.</p> <p>Methods</p> <p>Using a human <it>ex vivo </it>B-cell depletion assay with non-fucosylated and fucosylated anti-CD20 IgG1s rituximab, we monitored the binding of the therapeutic agents both to antigens on target cells (target side interaction) and to leukocyte receptors (FcγR) on effector cells (effector side interaction), comparing the intensities of ADCC in human blood.</p> <p>Results</p> <p>In the target side interaction, down-modulation of CD20 on B cells mediated by anti-CD20 was not observed. Simple competition for binding to the antigens on target B cells between fucosylated and non-fucosylated anti-CD20s was detected in human blood to cause inhibition of the enhanced ADCC of non-fucosylated anti-CD20 by fucosylated anti-CD20. In the effector side interaction, non-fucosylated anti-CD20 showed sufficiently high FcγRIIIa binding activity to overcome competition from plasma IgG for binding to FcγRIIIa on natural killer (NK) cells, whereas the binding of fucosylated anti-CD20 to FcγRIIIa was almost abolished in the presence of human plasma and failed to recruit NK cells effectively. The core fucosylation levels of individual serum IgG1 from healthy donors was found to be so slightly different that it did not affect the inhibitory effect on the ADCC of fucosylated anti-CD20.</p> <p>Conclusion</p> <p>Our results demonstrate that removal of fucosylated antibody ingredients from antibody therapeutics elicits high ADCC in human blood by two mechanisms: namely, by evading the inhibitory effects both of plasma IgG on FcγRIIIa binding (effector side interaction) and of fucosylated antibodies on antigen binding (target side interaction).</p

    Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses

    Get PDF
    The phytocystatins of plants are members of the cystatin superfamily of proteins, which are potent inhibitors of cysteine proteases. The Arabidopsis genome encodes seven phytocystatin isoforms (AtCYSs) in two distantly related AtCYS gene clusters. We selected AtCYS1 and AtCYS2 as representatives for each cluster and then generated transgenic plants expressing the GUS reporter gene under the control of each gene promoter. These plants were used to examine AtCYS expression at various stages of plant development and in response to abiotic stresses. Histochemical analysis of AtCYS1 promoter- and AtCYS2 promoter-GUS transgenic plants revealed that these genes have similar but distinct spatial and temporal expression patterns during normal development. In particular, AtCYS1 was preferentially expressed in the vascular tissue of all organs, whereas AtCYS2 was expressed in trichomes and guard cells in young leaves, caps of roots, and in connecting regions of the immature anthers and filaments and the style and stigma in flowers. In addition, each AtCYS gene has a unique expression profile during abiotic stresses. High temperature and wounding stress enhanced the expression of both AtCYS1 and AtCYS2, but the temporal and spatial patterns of induction differed. From these data, we propose that these two AtCYS genes play important, but distinct, roles in plant development and stress responses

    Heterozygous Mutation of Opa1 in Drosophila Shortens Lifespan Mediated through Increased Reactive Oxygen Species Production

    Get PDF
    Optic atrophy 1 (OPA1) is a dynamin-like GTPase located in the inner mitochondrial membrane and mutations in OPA1 are associated with autosomal dominant optic atrophy (DOA). OPA1 plays important roles in mitochondrial fusion, cristae remodeling and apoptosis. Our previous study showed that dOpa1 mutation caused elevated reactive oxygen species (ROS) production and resulted in damage and death of the cone and pigment cells in Drosophila eyes. Since ROS-induced oxidative damage to the cells is one of the primary causes of aging, in this study, we examined the effects of heterozygous dOpa1 mutation on the lifespan. We found that heterozygous dOpa1 mutation caused shortened lifespan, increased susceptibility to oxidative stress and elevated production of ROS in the whole Drosophila. Antioxidant treatment partially restored lifespan in the male dOpa1 mutants, but had no effects in the females. Heterozygous dOpa1 mutation caused an impairment of respiratory chain complex activities, especially complexes II and III, and reversible decreased aconitase activity. Heterozygous dOpa1 mutation is also associated with irregular and dysmorphic mitochondria in the muscle. Our results, for the first time, demonstrate the important role of OPA1 in aging and lifespan, which is most likely mediated through augmented ROS production
    corecore