347 research outputs found

    Chemical Mixing Model and K-Th-Ti Systematics and HED Meteorites for the Dawn Mission

    Get PDF
    The Dawn mission will explore 4 Vesta, a large differentiated asteroid believed to be the parent body of the howardite, eucrite and diogenite (HED) meteorite suite. The Dawn spacecraft carries a gamma-ray and neutron detector (GRaND), which will measure the abundances of selected elements on the surface of Vesta. This study provides ways to leverage the large geochemical database on HED meteorites as a tool for interpreting chemical analyses by GRaND of mapped units on the surface of Vesta

    K/TH in Achondrites and Interpretation of Grand Data for the Dawn Mission

    Get PDF
    The Dawn mission will explore 4 Vesta [1], a highly differentiated asteroid believed to be the parent body of the howardite, eucrite and diogenite (HED) meteorite suite [e.g. 2]. The Dawn spacecraft is equipped with a gamma-ray and neutron detector (GRaND), which will enable measurement and mapping of elemental abundances on Vesta s surface [3]. Drawing on HED geochemistry, Usui and McSween [4] proposed a linear mixing model for interpretation of GRaND data. However, the HED suite is not the only achondrite suite representing asteroidal basaltic crusts; others include the mesosiderites, angrites, NWA 011, and possibly Ibitira, each of which is thought to have a distinct parental asteroid [5]. Here we critically examine the variability of GRaND-analyzed elements, K and Th, in HED meteorites, and propose a method based on the K-Th systematics to distinguish between HED and the other differentiated achondrites. Maps of these elements might also recognize incompatible element enriched areas such as mapped locally on the Moon (KREEP) [6], and variations in K/Th ratios might indicate impact volatilization of K. We also propose a new mixing model using elements that will be most reliably measured by GRaND, including K

    Chemistry of Diogenites and Evolution of their Parent Asteroid

    Get PDF
    Diogenites are orthopyroxenite meteorites [1]. Most are breccias, but remnant textures indicate they were originally coarse-grained rocks, with grain sizes of order of cm. Their petrography, and major and trace element chemistry support an origin as crustal cumulates from a differentiated asteroid. Diogenites are genetically related to the basaltic and cumulate-gabbro eucrites, and the polymict breccias known as howardites, collectively, the HED suite. Spectroscopic observations, orbit data and dynamical arguments strongly support the hypothesis that asteroid 4 Vesta is the parent object for HED meteorites [2]. Here we discuss our new trace element data for a suite of diogenites and integrate these into the body of literature data. We use the combined data set to discuss the petrologic evolution of diogenites and 4 Vesta

    Possible Ni-Rich Mafic-Ultramafic Magmatic Sequence in the Columbia Hills: Evidence from the Spirit Rover

    Get PDF
    The Spirit rover landed on geologic units of Hesperian age in Gusev Crater. The Columbia Hills rise above the surrounding plains materials, but orbital images show that the Columbia Hills are older [1, 2]. Spirit has recently descended the southeast slope of the Columbia Hills doing detailed measurements of a series of outcrops. The mineralogical and compositional data on these rocks are consistent with an interpretation as a magmatic sequence becoming increasingly olivine-rich down slope. The outcrop sequence is Larry s Bench, Seminole, Algonquin and Comanche. The "teeth" on the Rock Abrasion Tool (RAT) wore away prior to arrival at Larry s Bench; the data discussed are for RAT brushed surfaces

    The contamination of the surface of Vesta by impacts and the delivery of the dark material

    Full text link
    The Dawn spacecraft observed the presence of dark material, which in turn proved to be associated with OH and H-rich material, on the surface of Vesta. The source of this dark material has been identified with the low albedo asteroids, but it is still a matter of debate whether the delivery of the dark material is associated with a few large impact events, to micrometeorites or to the continuous, secular flux of impactors on Vesta. The continuous flux scenario predicts that a significant fraction of the exogenous material accreted by Vesta should be due to non-dark impactors likely analogous to ordinary chondrites, which instead represent only a minor contaminant in the HED meteorites. We explored the continuous flux scenario and its implications for the composition of the vestan regolith, taking advantage of the data from the Dawn mission and the HED meteorites. We used our model to show that the stochastic events scenario and the micrometeoritic flux scenario are natural consequences of the continuous flux scenario. We then used the model to estimate the amounts of dark and hydroxylate materials delivered on Vesta since the LHB and we showed how our results match well with the values estimated by the Dawn mission. We used our model to assess the amount of Fe and siderophile elements that the continuous flux of impactors would mix in the vestan regolith: concerning the siderophile elements, we focused our attention on the role of Ni. The results are in agreement with the data available on the Fe and Ni content of the HED meteorites and can be used as a reference frame in future studies of the data from the Dawn mission and of the HED meteorites. Our model cannot yet provide an answer to the fate of the missing non-carbonaceous contaminants, but we discuss possible reasons for this discrepancy.Comment: 31 pages, 7 figures, 4 tables. Accepted for publication on the journal ICARUS, "Dark and Bright Materials on Vesta" special issu

    Radioelements on Vesta: An Update

    Get PDF
    The main-belt asteroid 4 Vesta is the putative parent body of the howardite, eucrite, and diogenite (HED) meteorites. Because these achondrites have similar petrology, geochemistry, chronology, and O-isotope compositions, it is thought that most HEDs originated from a single parent body. The connection to Vesta is supported by a close spectroscopic match between Vesta and the HEDs and a credible mechanism for their delivery to Earth. Studies of the HEDs show that Vesta underwent igneous differentiation, forming a Fe-rich core, ultramafic mantle, and basaltic crust. Here we present the results of peak analyses applied to a gamma ray difference spectrum to determine the absolute abundances of K and Th. Data are compared to meteorite whole-rock compositions and other inner solar system bodies. The results, while preliminary, represent our present best estimates for these elements. Because the element signatures are near detection limits and not fully resolved, further analysis (e.g. using spectral unmixing) will be required for improved accuracy and to characterize systematic errors

    Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X-ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra

    Get PDF
    Complete sets of mineral abundances for relatively unaltered volcanic or volcaniclastic rocks in Gusev Crater have been determined by modeling Mössbauer subspectral areas as mineral weight percentages, and combining those percentages with the proportions of iron-free minerals not detected by Mössbauer (normative plagioclase, apatite, and chromite, as calculated from Alpha Particle X-Ray Spectrometer (APXS) chemical analyses). Comparisons of synthetic thermal emission spectra calculated for these mineral modes with measured Miniature Thermal Emission Spectrometer (Mini-TES) spectra for the same rock classes show either good agreements or discrepancies that we attribute to sodic plagioclase compositions or unmodeled sulfate, glass, or pigeonite. The normative compositions of olivine, pyroxene, and feldspar calculated from APXS data are consistent with spectroscopic constraints on mineral compositions. Systematic variations between olivine abundances in APXS norms (which sample tens of micrometers depth) and olivine proportions measured by Mössbauer (which sample hundreds of micrometers depth) support the hypothesis that dissolution of olivine by acidic fluids has occurred on weathered rock surfaces

    Bulk Composition of Vesta as Constrained by the Dawn Mission and the HED Meteorites

    Get PDF
    Of the objects in the main asteroid belt, Vesta is of particular interest as it is large enough to have experienced internal differentiation (520 km diameter), and it is known to have a basaltic surface dominated by FeO-bearing pyroxenes. Furthermore, visible-IR spectra of Vesta and associated Vestoids are remarkably similar to laboratory spectra of Howardite-Eucrite-Diogenite (HED) meteorites, leading to the paradigm that the HEDs ultimately came from Vesta. Geochemical and petrological studies of the HEDs confirm the differentiated nature of the near-surface region of their parent body, and imply that crust extraction occurred well within the first 10 Ma of solar system history Vesta is therefore a prime target for studies that aim to constrain the earliest stages of planet building, and it is within this context that the NASA Dawn spacecraft orbited Vesta from July 2011 to September 2012. The results of the Dawn mission so far have significantly reinforced the HED-Vesta connection, confirming a significant degree of internal differentiation, a surface mineralogy compatible with that of the HEDs, and near-surface ratios of Fe/O and Fe/Si consistent with HED lithologies. The combination of data from the HED meteorites and the Dawn mission thus presents an unprecedented opportunity to use Vesta as a natural laboratory of early differentiation processes in the early solar system. However, the bulk composition of Vesta remains a significant unknown parameter, but one that plays a key role on the physical and chemical properties of the internal and surface reservoirs (core, mantle, crust). Several attempts have been made to constrain the bulk composition of the eucrite parent body, early endeavours relying on petrological or cosmochemical constraints. More recently, individual chondrite class compositions, or mixtures thereof, have been considered, constrained by considerations such as O-isotopes, trace-element ratios and siderophile element concentrations of the eucrites. The work presented here builds upon these latter studies, with the primary aims of: i) illustrating the potential diversity of the geochemical and geophysical properties of a fully differentiated Vesta-sized parent body, and ii) assessing which, if any, of the known chondritic bulk compositions are plausible analogues for proto-Vesta

    Dawn and the Vesta-HED Connection

    Get PDF
    Although it is difficult to explain exactly how eucrites and diogenites are related through simple magmatic processes, their shared oxygen isotopic compositions and the common occurrence of clasts of both lithologies in howardite breccias support derivation from a common parent body. For decades, HED meteorites have been linked to asteroid 4 Vesta, based on spectral similarities [1] and the discovery of a dynamical family (Vestoids) that provides a bridge between Vesta and nearby resonance escape hatches [2]. Although recently derived constraints on the rapidity of HED parent body differentiation, based on measurements of Al-26 in diogenites, have been used to argue against the Vesta-HED connection [3], new thermal evolution models [e.g., 4] appear to be heated and melted fast enough to account for this constraint. Data from the Dawn orbiter strengthen the Vesta - HED linkage and provide new insights into petrogenetic interpretations of these meteorites

    Do Mesosiderites Reside on 4 VESTA? an Assessment Based on Dawn Grand Data

    Get PDF
    Almost a century ago, simple petrographic observations were used to suggest a close genetic link between eucrites and the silicates in mesosiderites [1]. Mesosiderites are composed of roughly equal proportions of silicates that are very similar in mineralogy and texture to howardites, and Fe, Ni metal (Fig. 1) [2]. This similarity has led some to conclude that mesosiderites come from the howardite, eucrite and diogenite (HED) parent asteroid [3, 4]. Subsequent petrologic study demonstrated a number of differences between mesosiderite silicates and HEDs that are more plausibly explained as requiring separate parent asteroids [5]. However, HEDs and mesosiderites are identical in oxygen isotopic composition, and this has been used to argue for a common parent 4 Vesta [6]
    corecore