5,330 research outputs found

    Investigation of a 2-Colour Undulator FEL Using Puffin

    Get PDF
    Initial studies of a 2-colour FEL amplifier using one monoenergetic electron beam are presented. The interaction is modelled using the unaveraged, broadband FEL code Puffin. A series of undulator modules are tuned to generate two resonant frequencies along the FEL interaction and a self-consistent 2-colour FEL interaction at widely spaced non-harmonic wavelengths at 1nm and 2.4nm is demonstrated.Comment: Submitted to The 35th International Free-Electron Laser Conference, Manhattan, New York (2013

    Limb Darkening and Planetary Transits: Testing Center-to-limb Intensity Variations and Limb-Darkening Directly from Model Stellar Atmospheres

    Get PDF
    The transit method, employed by MOST, \emph{Kepler}, and various ground-based surveys has enabled the characterization of extrasolar planets to unprecedented precision. These results are precise enough to begin to measure planet atmosphere composition, planetary oblateness, star spots, and other phenomena at the level of a few hundred parts-per-million. However, these results depend on our understanding of stellar limb darkening, that is, the intensity distribution across the stellar disk that is sequentially blocked as the planet transits. Typically, stellar limb darkening is assumed to be a simple parameterization with two coefficients that are derived from stellar atmosphere models or fit directly. In this work, we revisit this assumption and compute synthetic planetary transit light curves directly from model stellar atmosphere center-to-limb intensity variations (CLIV) using the plane-parallel \textsc{Atlas} and spherically symmetric \textsc{SAtlas} codes. We compare these light curves to those constructed using best-fit limb-darkening parameterizations. We find that adopting parametric stellar limb-darkening laws lead to systematic differences from the more geometrically realistic model stellar atmosphere CLIV of about 50 -- 100 ppm at the transit center and up to 300 ppm at ingress/egress. While these errors are small they are systematic, and appear to limit the precision necessary to measure secondary effects. Our results may also have a significant impact on transit spectra.Comment: 12 pages, 14 figures, accepted for publication in ApJ after revision

    An extended model of the quantum free-electron laser

    Get PDF
    Previous models of the quantum regime of operation of the Free Electron Laser (QFEL) have performed an averaging and the application of periodic boundary conditions to the coupled Maxwell - Schrodinger equations over short, resonant wavelength intervals of the interaction. Here, an extended, one-dimensional model of the QFEL interaction is presented in the absence of any such averaging or application of periodic boundary conditions, the absence of the latter allowing electron diffusion processes to be modeled throughout the pulse. The model is used to investigate how both the steady-state (CW) and pulsed regimes of QFEL operation are affected. In the steady-state regime it is found that the electrons are confined to evolve as a 2-level system, similar to the previous QFEL models. In the pulsed regime Coherent Spontaneous Emission (CSE) due to the shape of the electron pulse current distribution is shown to be present in the QFEL regime for the first time. However, unlike the classical case, CSE in the QFEL is damped by the effects of quantum diffusion of the electron wavefunction. Electron recoil from the QFEL interaction can also cause a diffusive drift between the recoiled and non-recoiled parts of the electron pulse wavefunction, effectively removing the recoiled part from the primary electron-radiation interaction.Comment: Submitted to Optics Expres

    Localized hydrogels based on cellulose nanofibers and wood pulp for rapid removal of methylene blue

    Full text link
    Access to clean water has become increasingly difficult, motivating the need for materials that can efficiently remove pollutants. Hydrogels have been explored for remediation, but they often require long times to reach high levels of adsorption. To overcome this limitation, we developed a rapid, locally formed hydrogel that adsorbs dye during gelation. These hydrogels are derived from cellulose—a renewable, nontoxic, and biodegradable resource. More specifically, we found that sulfated cellulose nanofibers or sulfated wood pulps, when mixed with a water‐soluble, cationic cellulose derivative, efficiently remove methylene blue (a cationic dye) within seconds. The maximum adsorption capacity was found to be 340 ± 40 mg methylene blue/g cellulose. As such, these localized hydrogels (and structural analogues) may be useful for remediating other pollutants.Access to clean water has become increasingly difficult, motivating the need for materials that can efficiently remove pollutants. In this work, locally formed hydrogels made from mixing anionic and cationic cellulose derivatives are developed, which rapidly adsorb cationic dye during the gel formation process. A maximum adsorption efficiency of 340 ± 40mg methylene blue/g cellulose was observed, rivaling comparable cellulose‐based gels reported. These localized hydrogels (and structural analogues) may be useful for remediating other pollutants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163385/2/pola29833.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163385/1/pola29833_am.pd

    Free-electron lasers : echoes of photons past

    Get PDF
    High-harmonic generation is an established method to significantly upshift laser photon energies. Now, researchers at the SLAC National Accelerator Laboratory have used echo concepts to generate coherent high-harmonic output from an electron-beam light source

    Puffin : A three dimensional, unaveraged free electron laser simulation code

    Get PDF
    The broadband, 3D FEL code Puffin is presented. The analytical model is derived in absence of the Slowly Varying Envelope Approximation, and can model undulators of any polarisation. Due to the enhanced resolution, the memory and processing requirements are greater than equivalent unaveraged codes. The numerical code to solve the system of equations is therefore written for a parallel computing environment utilizing MPI. Some example simulations are presented

    How much incisor decompensation is achieved prior to orthognathic surgery?

    Get PDF
    Objectives: To quantify incisor decompensation in preparation for orthognathic surgery. Study design: Pre-treatment and pre-surgery lateral cephalograms for 86 patients who had combined orthodontic and orthognathic treatment were digitised using OPAL 2.1 [http://www.opalimage.co.uk]. To assess intra-observer reproducibility, 25 images were re-digitised one month later. Random and systematic error were assessed using the Dahlberg formula and a two-sample t-test, respectively. Differences in the proportions of cases where the maxillary (110 0 +/- 6 0 ) or mandibular (90 0 +/- 6 0 ) incisors were fully decomensated were assessed using a Chi-square test (p<0.05). Mann-Whitney U tests were used to identify if there were any differences in the amount of net decompen - sation for maxillary and mandibular incisors between the Class II combined and Class III groups (p<0.05). Results: Random and systematic error were less than 0.5 degrees and p<0.05, respectively. A greater proportion of cases had decompensated mandibular incisors (80%) than maxillary incisors (62%) and this difference was statis - tically significant (p=0.029). The amount of maxillary incisor decompensation in the Class II and Class III groups did not statistically differ (p=0.45) whereas the mandibular incisors in the Class III group underwent statistically significantly greater decompensation (p=0.02). Conclusions: Mandibular incisors were decompensated for a greater proportion of cases than maxillary incisors in preparation for orthognathic surgery. There was no difference in the amount of maxillary incisor decompensation between Class II and Class III cases. There was a greater net decompensation for mandibular incisors in Class III cases when compared to Class II cases

    A simple model for the generation of ultra-short radiation pulses

    Get PDF
    A method for generating a single broadband radiation pulse from a strongly chirped electron pulse is described. The evolution of the chirped electron pulse in an undulator may generate a pulse of coherent spontaneous radiation of shorter duration than the FEL cooperation length. An analytic expression for the emitted radiation pulse is derived and compared with numerical simulation

    Multiple-Purpose Subsonic Naval Aircraft (MPSNA): Multiple Application Propfan Study (MAPS)

    Get PDF
    Study requirements, assumptions and guidelines were identified regarding carrier suitability, aircraft missions, technology availability, and propulsion considerations. Conceptual designs were executed for two missions, a full multimission aircraft and a minimum mission aircraft using three different propulsion systems, the UnDucted Fan (UDF), the Propfan and an advanced Turbofan. Detailed aircraft optimization was completed on those configurations yielding gross weight performance and carrier spot factors. Propfan STOVL conceptual designs were exercised also to show the effects of STOVL on gross weight, spot factor and cost. An advanced technology research plan was generated to identify additional investigation opportunities from an airframe contractors standpoint. Life cycle cost analysis was accomplished yielding a comparison of the UDF and propfan configurations against each other as well as against a turbofan with equivalent state of the art turbo-machinery
    corecore