59 research outputs found

    The acquisition of Sign Language: The impact of phonetic complexity on phonology

    Get PDF
    Research into the effect of phonetic complexity on phonological acquisition has a long history in spoken languages. This paper considers the effect of phonetics on phonological development in a signed language. We report on an experiment in which nonword-repetition methodology was adapted so as to examine in a systematic way how phonetic complexity in two phonological parameters of signed languages — handshape and movement — affects the perception and articulation of signs. Ninety-one Deaf children aged 3–11 acquiring British Sign Language (BSL) and 46 hearing nonsigners aged 6–11 repeated a set of 40 nonsense signs. For Deaf children, repetition accuracy improved with age, correlated with wider BSL abilities, and was lowest for signs that were phonetically complex. Repetition accuracy was correlated with fine motor skills for the youngest children. Despite their lower repetition accuracy, the hearing group were similarly affected by phonetic complexity, suggesting that common visual and motoric factors are at play when processing linguistic information in the visuo-gestural modality

    Designing Bioactive Delivery Systems for Tissue Regeneration

    Get PDF
    The direct infusion of macromolecules into defect sites generally does not impart adequate physiological responses. Without the protection of delivery systems, inductive molecules may likely redistribute away from their desired locale and are vulnerable to degradation. In order to achieve efficacy, large doses supplied at interval time periods are necessary, often at great expense and ensuing detrimental side effects. The selection of a delivery system plays an important role in the rate of re-growth and functionality of regenerating tissue: not only do the release kinetics of inductive molecules and their consequent bioactivities need to be considered, but also how the delivery system interacts and integrates with its surrounding host environment. In the current review, we describe the means of release of macromolecules from hydrogels, polymeric microspheres, and porous scaffolds along with the selection and utilization of bioactive delivery systems in a variety of tissue-engineering strategies

    Alternative reproductive tactics, an overlooked source of life history variation in the invasive Round Goby

    No full text
    Alternative reproductive tactics (ARTs) can generate considerable within species life history variation, but are often overlooked. Here, we use the invasive Round Goby (Neogobius melanostomus) to address a number of ecological and evolutionary questions about ARTs. Making use of a 12-year, multi-site, Laurentian Great Lakes dataset, we show that guarder males were twice as common as sneakers males, but that non-reproductive males were the most common tactic. The ratio of guarder to sneaker males did not vary spatially despite wide ranges of resource density across sites. Guarders and sneakers spanned similar age ranges, suggesting the ARTs are non-sequentially expressed. Based on short term (gut contents) diet analyses, both reproductive tactics consumed fewer types of food and tended to consume fewer items overall when compared to non-reproductive males. Long term (isotope) diet analyses showed that guarder males fed at a higher trophic level (higher δ15N) and had a broader isotopic niche. Our results show that ARTs are an important aspect of this invasive speciesâ breeding system and should be accounted for when assessing and managing populations.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Diet and foraging of Round Goby (Neogobius melanostomus) in a contaminated harbour

    No full text
    Copyright © 2017 Crown Copyright. Anthropogenic pollution and the introduction of invasive species are two contributing factors to ecosystem degradation. Although Hamilton Harbour (Ontario, Canada), a highly impacted ecosystem, is well-studied, the diet, trophic position, and foraging behaviour of the invasive Round Goby (Neogobius melanostomus) in this area is not well understood. In this study, we compared digestive tract contents, foraging behaviour, and stable isotope values of Round Goby from sites of low and high sediment contamination in Hamilton Harbour. We also assessed prey availability by conducting sediment invertebrate abundance analyses at these sites. Regardless of site, Chironomids, Cladocerans, Copepods and Dreissenids were the most common food items found in Round Goby digestive tracts, and females always had heavier gut contents compared to males. Fish from the high contamination site consumed fewer prey items, had lower gut fullness scores, and fed at a lower trophic level based on lower δ13C and δ15N values. Our results suggest that Round Goby living in highly contaminated areas are feeding less than Round Goby from areas of lower contamination, but that these diet differences do not reflect differences in prey availability. Fish from the high contamination site also typically moved more slowly while foraging. Taken together, these results provide an analysis of the main prey items of Round Goby in Hamilton Harbour, and demonstrate how polluted environments can impact diet, trophic position, and foraging of an introduced fish species

    Diet and foraging of Round Goby (<i>Neogobius melanostomus</i>) in a contaminated harbour

    No full text
    <p>Anthropogenic pollution and the introduction of invasive species are two contributing factors to ecosystem degradation. Although Hamilton Harbour (Ontario, Canada), a highly impacted ecosystem, is well-studied, the diet, trophic position, and foraging behaviour of the invasive Round Goby (<i>Neogobius melanostomus</i>) in this area is not well understood. In this study, we compared digestive tract contents, foraging behaviour, and stable isotope values of Round Goby from sites of low and high sediment contamination in Hamilton Harbour. We also assessed prey availability by conducting sediment invertebrate abundance analyses at these sites. Regardless of site, Chironomids, Cladocerans, Copepods and Dreissenids were the most common food items found in Round Goby digestive tracts, and females always had heavier gut contents compared to males. Fish from the high contamination site consumed fewer prey items, had lower gut fullness scores, and fed at a lower trophic level based on lower δ<sup>13</sup>C and δ<sup>15</sup>N values. Our results suggest that Round Goby living in highly contaminated areas are feeding less than Round Goby from areas of lower contamination, but that these diet differences do not reflect differences in prey availability. Fish from the high contamination site also typically moved more slowly while foraging. Taken together, these results provide an analysis of the main prey items of Round Goby in Hamilton Harbour, and demonstrate how polluted environments can impact diet, trophic position, and foraging of an introduced fish species.</p
    corecore