8,824 research outputs found

    Distributional approach to point interactions in one-dimensional quantum mechanics

    Get PDF
    We consider the one-dimensional quantum mechanical problem of defining interactions concentrated at a single point in the framework of the theory of distributions. The often ill-defined product which describes the interaction term in the Schr\"odinger and Dirac equations is replaced by a well-defined distribution satisfying some simple mathematical conditions and, in addition, the physical requirement of probability current conservation is imposed. A four-parameter family of interactions thus emerges as the most general point interaction both in the non-relativistic and in the relativistic theories (in agreement with results obtained by self-adjoint extensions). Since the interaction is given explicitly, the distributional method allows one to carry out symmetry investigations in a simple way, and it proves to be useful to clarify some ambiguities related to the so-called δ′\delta^\prime interaction.Comment: Open Access link: http://journal.frontiersin.org/Journal/10.3389/fphy.2014.00023/abstrac

    Performance tuning of a smartphone-based overtaking assistant

    Get PDF
    ITS solutions suffer from the slow pace of adoption by manufacturers despite the interest shown by both consumers and industry. Our goal is to develop ITS applications using already available technologies to make them affordable, quick to deploy, and easy to adopt. In this paper we introduce EYES, an overtaking assistance solution that provides drivers with a real-time video feed from the vehicle located just in front. Our application thus provides a better view of the road ahead, and of any vehicles travelling in the opposite direction, being especially useful when the front view of the driver is blocked by large vehicles. We evaluated our application using the MJPEG video encoding format, and have determined the most effective resolution and JPEG quality choice for our case. Experimental results from the tests performed with the application in both indoor and outdoor scenarios, allow us to be optimistic about the effectiveness and applicability of smartphones in providing overtaking assistance based on video streaming in vehicular networks

    Gauged Thirring Model in the Heisenberg Picture

    Get PDF
    We consider the (2+1)-dimensional gauged Thirring model in the Heisenberg picture. In this context we evaluate the vacuum polarization tensor as well as the corrected gauge boson propagator and address the issues of generation of mass and dynamics for the gauge boson (in the limits of QED3_3 and Thirring model as a gauge theory, respectively) due to the radiative corrections.Comment: 14 pages, LaTex, no figure

    Messiah: An ITS drive safety application

    Get PDF
    This article describes a novel safety application based on the open source navigation software OsmAnd, which runs on the Android platform. The application offers vehicles with "smart navigation", and maintains a network of the vehicles that use our application. The process of network creation and maintenance is important as our application enables vehicles to communicate with one another to exchange useful information. The main function of the application is to inform vehicles of relevant vehicles approaching, termed as "administrative vehicles" in this article, and include ambulances, police cars and fire brigades. Based on the received information, our application notifies the driver, who can now take navigation decisions based on it. While developing the application, problems were found when attempting to create an Ad-hoc network. A solution to the problem of managing the Ad-hoc network has been proposed and is under development

    A novel on-board Unit to accelerate the penetration of ITS services

    Get PDF
    In-vehicle connectivity has experienced a big expansion in recent years. Car manufacturers have mainly proposed OBU-based solutions, but these solutions do not take full advantage of the opportunities of inter-vehicle peer-to-peer communications. In this paper we introduce GRCBox, a novel architecture that allows OEM user-devices to directly communicate when located in neighboring vehicles. In this paper we also describe EYES, an application we developed to illustrate the type of novel applications that can be implemented on top of the GRCBox. EYES is an ITS overtaking assistance system that provides the driver with real-time video fed from the vehicle located in front. Finally, we evaluated the GRCbox and the EYES application and showed that, for device-to-device communication, the performance of the GRCBox architecture is comparable to an infrastructure network, introducing a negligible impact

    EYES : a novel overtaking assistance system for vehicular networks

    Get PDF
    Developments in the ITS area are received with great expectation by both consumers and industry. Despite their huge potential benefits, ITS solutions suffer from the slow pace of adoption by manufacturers. In this paper we propose EYES, an ITS system that aims at helping drivers in overtaking. The system autonomously creates a network of the devices running EYES, and provides drivers with a video feed from the vehicle located just ahead, thus presenting a better view of any vehicles coming from the opposite direction and the road ahead. This is specially useful when the front view of the driver is blocked by large vehicles, and thus the decision whether to overtake can be taken based on the visuals provided by the application. We have validated EYES, the proposed overtaking assistance system, in both indoor and realistic scenarios involving vehicular network, and preliminary results allow being optimistic about its effectiveness and applicability

    Second-order quantum nonlinear optical processes in single graphene nanostructures and arrays

    Get PDF
    Intense efforts have been made in recent years to realize nonlinear optical interactions at the single-photon level. Much of this work has focused on achieving strong third-order nonlinearities, such as by using single atoms or other quantum emitters while the possibility of achieving strong second-order nonlinearities remains unexplored. Here, we describe a novel technique to realize such nonlinearities using graphene, exploiting the strong per-photon fields associated with tightly confined graphene plasmons in combination with spatially nonlocal nonlinear optical interactions. We show that in properly designed graphene nanostructures, these conditions enable extremely strong internal down-conversion between a single quantized plasmon and an entangled plasmon pair, or the reverse process of second harmonic generation. A separate issue is how such strong internal nonlinearities can be observed, given the nominally weak coupling between these plasmon resonances and free-space radiative fields. On one hand, by using the collective coupling to radiation of nanostructure arrays, we show that the internal nonlinearities can manifest themselves as efficient frequency conversion of radiative fields at extremely low input powers. On the other hand, the development of techniques to efficiently couple to single nanostructures would allow these nonlinear processes to occur at the level of single input photons.Comment: 25 pages, 6 figure
    • …
    corecore