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Abstract
Intense efforts have beenmade in recent years to realize nonlinear optical interactions at the single-
photon level. Much of this work has focused on achieving strong third-order nonlinearities, such as by
using single atoms or other quantum emitters, while the possibility of achieving strong second-order
nonlinearities remains unexplored.Here, we describe a novel technique to realize such nonlinearities
using graphene, exploiting the strong per-photon fields associatedwith tightly confined graphene
plasmons in combinationwith spatially nonlocal nonlinear optical interactions.We show that in
properly designed graphene nanostructures, these conditions enable extremely strong internal down-
conversion between a single quantized plasmon and an entangled plasmon pair, or the reverse process
of second harmonic generation. A separate issue is how such strong internal nonlinearities can be
observed, given the nominally weak coupling between these plasmon resonances and free-space
radiativefields. On one hand, by using the collective coupling to radiation of nanostructure arrays, we
show that the internal nonlinearities canmanifest themselves as efficient frequency conversion of
radiativefields at extremely low input powers. On the other hand, the development of techniques to
efficiently couple to single nanostructures would allow these nonlinear processes to occur at the level
of single input photons.

The ability to realize strong interactions between single photons potentially enables one to attain the ultimate
limit of classical nonlinear optical devices [1–3] and is a key resource in quantum information processing [4]. A
number of schemes are being pursued to realize third-order nonlinearities at the quantum level [5–7],most
notably by exploiting the anharmonic electronic spectrum associatedwith individual atoms or other quantum
emitters [8–13].However, there still exist no viable approaches toward achieving comparably strong second-
order nonlinearities. For example, in state-of-the-art devices, a single photon is down-converted into an
entangled photon pair with a relatively low efficiency of 10 8∼ − [14, 15]. Devices with higher efficiencies would
be useful formany significant tasks, such as dramatically improving thefidelities of quantum information
processing schemes based upon detection and post-selection [14].

In this letter, we show that graphene is a promising second-order nonlinearmaterial at the single-photon
level due to its extraordinary electronic and optical properties [16]. This approachmakes use of the fact that a
conductor enables a nonlinear optical interaction that is spatially nonlocal over a distance comparable to the
inverse of the Fermimomentum kF . In graphene, this length can be electrostatically tuned to be significantly
larger than in typical conductors. At the same time, graphene can support tightly confined surface plasmons
(SPs), i.e. combined excitations of electromagnetic field and charge density waves, whosewavelength is reduced
well below the free-space diffraction limit [17] andwhosemomentum qp is consequently enlarged.We show

that the ability to achieve ratios q kp F approaching unity enables giant second-order interactions between

graphene plasmons.
Wefirst study the implications of such nonlinearities in afinite-size nanostructure, obtaining a general

scaling law for the nonlinearity as a function of the linear dimension of the structure and the doping. To give an

OPEN ACCESS

RECEIVED

22May 2015

ACCEPTED FOR PUBLICATION

9 July 2015

PUBLISHED

17August 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/8/083031
mailto:darrick.chang@icfo.es
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/8/083031&domain=pdf&date_stamp=2015-08-17
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/8/083031&domain=pdf&date_stamp=2015-08-17
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


explicit example, we compute numerically the nonlinearities associatedwith a structure designed to support
plasmon resonances at frequencies and 2p pω ω , which enables second harmonic generation (SHG) or down
conversion (DC). Under realistic conditions, we find that the rate of internal conversion between a single
quantized plasmon in the uppermode and two in the lowermode can be roughly1% of the bare frequency,
indicating a remarkable interaction strength.

It is not straightforward to directly observe plasmons, and instead they are typically excited and coupled out
to propagating photonswith low efficiencies. Thus, we then investigate how the extremely strong internal
nonlinearities canmanifest themselves given free-space input and outputfields. First, we show that the
collectively enhanced coupling of an array of nanostructures to free-space fields enables an extremely low-
intensity input beam to be converted to an outgoing beamat the second harmonic, via interactionwith
plasmons.Next, we derive an important fundamental result, that while such an array can collectively increase
the linear coupling between free fields and plasmons, it ultimately dilutes the effect that the intrinsic
nonlinearities of plasmons can have on these free fields.Motivated by this, wefinally argue that it is crucial to
develop techniques to couple efficiently to single nanostructures.We show that efficient couplingwould enable
SHGorDCwith inputs at the single-photon level, and predict a set of experimental signatures in the output
fields that would verify that strong quantumnonlinear interactions are occurring between graphene plasmons.

1. Second-order nonlinear conductivity of graphene

Graphene has attracted tremendous interest due to its ability to support tightly confined, electrostatically
tunable SPs [17–24].More recently, its nonlinear properties have gained attention [25–29]. For example, four-
wavemixing produced by single-pass transmission through a single graphene layer has been observed [26],
while a second-order response at oblique incidence angles has been predicted [27], and intrinsic second-order
nonlinearities have been used to excite graphene plasmons from free-space beams via difference frequency
generation [28]. It has also been proposed that graphene nanostructures could enable quantum third-order
nonlinearities [29].

We use a unified approach to determine the linear and nonlinear properties within the single-band
approximation based upon the semi-classical Boltzmann transport equation [25, 29–31], which describes the
evolution of the carrier distribution function f tr( , )k at position r andmomentum k .Within this theory k and

r obey the classical equations ofmotion: r v k˙ (1 )k kϵ= = ∂ ∂ , and ek E˙ = − .We are interested in energy
scales 1≲ eV, so it is possible to linearize the graphene dispersion relation around theDirac points,

v kFkϵ = ± ∣ ∣ , where +(−) denotes doping to positive (negative) Fermi energies EF. The single-band
approximation holds provided that the optical frequency is less than∼ E2 F , such that absorption arising from
interband electron–hole transitions is suppressed [20]. The carrier dynamics are then described by the equation

t
f t v f t

e
t f tr k r E r r( , ) ˆ · ( , ) ( , ) · ( , ), (1)Fk r k k k 

∂
∂

± =


where E is the sumof the external field Eext and the induced field Eind generated by the carrier distribution.
Themacroscopic quantities such as the density of charge and the surface current can be related to the

microscopic dynamics of the carriers. For instance, the surface current depends on themicroscopic carrier
velocities as

t eg g f tJ r
k

v r( , )
d

(2 )
( , ), (2)v s k k

2

2∫ π
= −

where gs= gv=2 are the spin and valley degeneracies of graphene. The nonlinear set of equations (1) and (2) can
be solved perturbatively to give the relation between the surface current and the electric field (i.e. the
conductivity). At lowest order, one assumes that fk is slightly displaced from its equilibrium (zero temperature)

Fermi distribution, f t k kr( , ) ( )Fk
(0) θ= − . Thus, one can substitute f k

(0) into the term fk k of equation (1),

yielding a linear relationship between a perturbed distribution function f (1) and E. Solving in the Fourier
domain, the perturbed distribution function f (1) can be inserted into equation (2) tofind the resulting current.
This yields a linear relation between the current andfield, k kJ E( , ) ( ) ( , )(1)ω σ ω ω= , where the proportionality
constant is the familiar Drude conductivity [18, 19]

e E
( )

i
. (3)

F
(1)

2

2
σ ω

π ω
=


Finally, the procedure can be iterated by inserting the perturbed distribution function (e.g., f (1)) into
equation (1) to yield higher order conductivity functions, as derived in greater detail in appendix A.

Graphene is a centro-symmetricmaterial, which is typically associatedwith a vanishing second-order
nonlinearity [32]. Indeed, if the nonlinear response is spatially local, J Er r(2 , ) ( ) ( , )(2) (2) 2ω σ ω ω= , spatial

2
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inversion symmetry implies that J E( )(2) 2σ− = − , which enforces that 0(2)σ = . This argument breaks down if
the conductivity is nonlocal [33], for example if q q( , )σ ω ∝ , such that the current depends on the electric field
gradient, J E E( ) r

(2) (2)σ ω= ∂ .
In principle, nonlocal effects are present in anymaterial. For a given electric field strength, the size of this

nonlinear effect depends on a dimensionless parameter k knl [34].Here k is thewavevector of the light that
dictates how rapidly the field changes in space, and knl

1− is a characteristic length scale over which carriers in the
material become sensitive tofield gradients. Inmaterials where the charges are tightly bound to their atoms, the
relevant length scale knl

1− is given by the atomic size of angstroms, which is thus negligible compared to optical
wavelengths. In conductingmaterials, the length scale is set by the typical distance between carriers, which is
proportional to the inverse of the Fermiwavevector. In a typicalmetal like silver, the high carrier density also
yields a negligible length scale of k k 1nl F

1 1∼ ∼− − Å. In contrast, in graphenewe can simultaneously exploit two
effects to increase significantly k knl. First, graphene can be electrostatically tuned to have very low carrier
densities to increase kF

1− . Second, one can use tightly confined plasmon excitations in graphene, which have been
shown to yield a reduction in thewavelength (or equivalently enhancement inwavevector qp) compared to free-
space light by two orders ofmagnitude. Indeed, belowwe show specifically that k k q k 1nl p F∼ ≲ emerges as

the relevant quantity to characterize the strength of nonlocal nonlinearities in graphene.
After these considerations, we calculate the second-order conductivity using the procedure explained above.

The second-order conductivity can be expanded in powers of qp in the long-wavelength limit, defined by the
condition v q 1F p pω ≪ (see appendix A). As expected, the zeroth-order term,which corresponds to the local

contribution, vanishes, while the term linear in qp provides a relation (in real space) between the electricfields at
frequency pω and an induced current density at frequency 2 pω

( ) ( )J E E E2 2 ; . (4)i p i ijkl p p j k l
2 (1) 2 (2)p p p pσ ω σ ω ω= +ω ω ω ω

Here ijkl denote in-plane vector indices and summation over repeated indices is implied. The nonlocal second
order conductivity tensor reads

( ) ( )
e g g v

2 ;
i

32
5 3 . (5)ijkl p p

v s F

p
ij kl ik jl il jk

(2)
3 2

2 3
σ ω ω

π ω
δ δ δ δ δ δ= ∓ − +



This result can be converted into a relation between the electrostatic potential and the induced charge, which
reproduces previously obtained results for the nonlinear polarizability [27].

2.Quantummodel of interacting graphene plasmons

TheDrude conductivity for infinite graphene given by equation (3) provides a valid description of the carrier
dynamics of graphenewhen EFω ≲ [18, 19], where the interband transitions can be neglected. Like any
conductor in contact with a dielectric (or vacuum, aswe assume here), graphene supports SPswith a dispersion
relation given by

q

q

E
2 , (6)

p

F

p

0 α
ω

≈


where q c0 ω= is the free-spacewavevector at the same frequency and 1 137α ≈ is thefine structure constant.
As EF pω≳  , equation (6) indicates a reduction in the plasmonwavelength compared to free space by up to two
orders ofmagnitude, which should significantly drive up the effects of spatially nonlocal interactions.

We have seen that atfixedfield strength, the nonlinear interactions between plasmons in graphene should be
increased due to a large ratio of q kp F . However, what ismost important for nonlinear optics is how tomaximize

the interaction strength per photon (i.e. per quantized plasmon). A simple argument,mademore precise below,
is that because the energy of a single plasmon isfixed at pω , confining it to as small volumesV as possible

maximizes its intensity or electric field, E Vp0 0ω ϵ∼  . Thismotivates the study of nonlinear optical
interactions between plasmons in nano-structures, whichwe nowpresent in detail. As a specific example, wewill
focus on nanostructures that have plasmon resonances at frequencies pω and 2 pω . This particular choice of
structure is to facilitateDCor SHG.

The derivation of the quantumHamiltonian of the system (reported in appendix B) starts from the
expression of the electrostatic energy (a valid approach provided that the linear dimension of the structureD is
small compared to the free-space wavelength 0λ )

H r r r
1

2
d *( ) ( ), (7)

S

2

i

i i∫∑ ρ ϕ=
ω

ω ω
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where ρ is the charge density andϕ the electrostatic potential. The charge density can be replaced by the current
density using the continuity equation, which in turn can be expressed in termof the electricfield using
equation (4). Expressing the potentials in terms of the electric fields we end upwith an expression for the energy
depending only on the electric field of the twomodes, whose canonical quantization gives

( ) ( ) ( )H a a b b g b ai 2 2 i 2 h. c. . (8)p a p b
† † † 2ω Γ ω Γ= − ′ + − ′ + +  

Here a and b are the annihilation operators of the twoSPmodes, and g is anoscillation rate between a single
plasmonwith frequency 2 pω and twoplasmonswith frequency pω [35]. Adopting a quantum jumpapproachwe
have added to the frequencies an imaginary part accounting for the total decay rates aΓ′ and bΓ′of the twomodes.
Thequantization associateswith a single plasmon a typical electricfield amplitude q SE ( )p p0 0

1 2p ω ϵ∼ω  ,
where S is the structure area, confirming the largeper-plasmonfield associatedwith tight confinement. The
quantumcoupling constant g is rigorously givenby the classical interaction energybetween the nonlinear
current at 2 pω and thefields at pω , butwith the classicalfield values replacedby theper-photonfield strengths
E r˜ ( )iω

( )g E E Er r r r
1

4i
2 ; d ˜ ( ) ˜ ( ) ˜ ( ) . (9)

p
ijkl p p

S
i j k l

(2) 2 2 p p p∫ω
σ ω ω= ω ω ω

Equation (9) shows that g is directly proportional to the second-order conductivity ijkl
(2)σ calculated in the

previous section, and its dependence on the particular geometric configuration of themodes is confined to the
overlap integral [36]. It should be noted that for extended graphene, themode functions are simply propagating
planewaves E er( ) kzi∼ . Thus the integral in equation (9) produces a delta function, g k k(2 )1 2δ∝ − , which
reflectsmomentum conservation. In contrast, in small structures the spatially complexmodes can be thought of
as a superposition ofmany different wavevectors, and a large interaction strength is ensured by engineering the
modes such that they have good spatial overlap [37].

Using the fact that q SE ( )p p0 0
1 2p ω ϵ∼ω  , that the nonlinear conductivity has an amplitude

e vF p
(2) 3 2 2 3σ ω∼  , and that the field gradients occur over a length scale qp

1− , one can readily verify that

equation (9) predicts a general scaling of g k D( )p F
7 4ω β= . The dimensionless coefficient of proportionality,

whichwe call β, depends only on the geometric overlap of themodes (e.g. 0β = if themodes have thewrong
symmetries, or 1β ∼ formodeswith good overlap). As theminimumdimension of the structure should be
comparable to the plasmonwavelength, D q1 p∼ , themaximum ratio of g pω scales like q k( )p F

7 4,

confirming the enhanced nonlinearities as qp become comparable to kF. Note that this relation is valid only for
q kp F≲ , where the conductivity of graphene isDrude-like, as discussed above. In this derivation, we have

assumed that afinite-size structure has the same conductivity as infinite graphene. Although this is not true for
arbitrarily small structures, where quantum finite-size effects play a significant role, this approximation is
already qualitatively correct for structures with D 10≳ nm [38].

To show that a high overlap factor of 1β ∼ can be reached in typical structures, we consider one specific
example of a doped graphene isosceles triangle embedded in vacuum. This choice enables a simple optimization
to obtain the desired ratio of 2 between the SPmode frequencies. Indeed, wefind that an aspect ratio r=1.3
produces plasmons at frequencies pω and 2 pω (see figure 1). Themodes shown infigure 1 are numerically

computed using a commercial finite-difference code (COMSOL®) by driving the systemwith a planewave
whose associated externalfield Eext is polarized along the axis of symmetry of the triangle.Wemodel the
structure as a thin slabwith rounded edges and a dielectric function t1 4 i (1)ϵ π σ ω= + . The thickness t is
chosen to be t=0.5 nm (this value is sufficiently small that the in-plane current has converged, and the results do
not depend on the specific value), and the expression of (1)σ is given by the equation (3). Since the characteristic
length of the structure ismuch smaller than the free-spacewavelength, the response can be determined
electrostatically, where the retardation and the response to themagnetic field are neglected. Furthermore, the
ratio 1 : 2 between the first and second plasmon resonances is preserved independently of the actual size of the
triangle and the doping [39].While the remaining parameters are somewhat arbitrary, as a numerical example,
we consider the realistically achievable length and doping level ofD=22nm andEF=0.2 eV. For this choice, we
observe a pronounced first harmonicmode (figures 1(a), (c)) with energy 0.20pω ≃ eV, and a second
harmonic resonance (figures 1(b), (c)) twice as energetic. Oncewe obtain themode profiles, their nonlinear
coupling is evaluated using the equations (5) and (9). Numerical calculations for this structure yield a value of

0.34β = , hence the quantumoscillation rate g reaches a remarkable 1.25%value of the dipolar frequency pω .
Surface plasmons in realistic graphene structures generally decay by non-radiativemechanisms, whose

precise nature is still under active investigation [23, 40, 41].We thus use a phenomenological description
associating an intrinsic decay rateΓ to themodes. For our numerical calculations wewill assume amode quality
factor of Q pω Γ= ranging from some tens to one hundred, close towhat has been experimentally observed in
nanostructures [23], although in our analytical results wewill explicit keep track of the scalingwithΓ.

4
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In addition to intrinsic decay channels, graphene SPs can also be excited and detected through desirable
channels, i.e. via radiative decay.Wewill use the notation a b,κ to indicate such decay rates. The total decay rate
introduced inHamiltonian (8) is thus a b a b a b, , ,Γ Γ κ′ = + .Wewill also introduce the notation a b,η to indicate the
external coupling efficiencies of themodes, defined as a b a b, ,κ Γ′ . For example, in our structure, the first and
second harmonicmodes radiate into free space at rates 2 10a p

7κ ω≈ × − and 5.4 10b p
8κ ω≈ × − , as numerically

calculated through the extinction cross sections of the incident field (see appendix C). The external coupling
efficiency can be increased by usingmore sophisticated techniques, such as SNOM[21] or graphene
nanoribbons [29].

3.Observing and utilizing this nonlinearity: classical light

The rate of oscillation or internal conversion between a single quantized plasmon and two lower-frequency
plasmons is remarkable, particularly considering that the state-of-the-art down-conversion efficiency in
conventional nonlinear crystals is 10 8∼ − [14, 15]. It should be pointed out that the internal conversion rate
holds independently of how the plasmons are generated. Of course, for both practical observation and for
technological relevance, it would be ideal if the plasmons could be efficiently excited and subsequently converted
back into propagating photons (such as from free space, fiber, or other evanescentmodes).Motivated by this, we
now examine the coupling problem to propagating photons inmore detail and investigate how their
intermediate conversion and interaction as plasmonsmanifests itself as strong, effective nonlinearities between
propagating photons.

Remarkably, the extinction cross section (3 2 )ext
0
2σ π λ κ Γ= ′of a single nano-structure (see appendix C)

can exceed its physical size. However, the low values of κ Γ′ still imply that extσ ismuch smaller than the
diffraction limited area 0

2λ for free-space beams, indicating that such sources cannot be used to excite plasmons
efficiently. In particular, it can be shownusing time-reversal symmetry that the best in-coupling (excitation)
efficiency that can be achieved is the same as the out-coupling efficiency, η [42]. The situation is illustrated
schematically infigure 2. This raises an important conceptual question.On one hand, graphene plasmons seem
to represent the ‘ultimate’ quantumnonlinear optical device, capable of internal conversion at the single-photon
level. However, very little incoming light enters the structure and turns into a plasmon, and vice versa, a small
percentage of plasmons are radiated back into light.We nowdiscuss variousways inwhich the strong quantum-
level internal nonlinearities of graphene can be observed and utilized, given these limitations.

Oneway of increasing the coupling to radiation, which has already been discussed in the linear optical
regime, is to exploit an array of nano-structures [23, 43]. Intuitively, since the extinction cross section of a single
element can exceed its physical size, having a dense array extending over an area larger than 0

2λ guarantees
efficient interactionwith an incoming beam.We thus proceed to consider the nonlinear interaction between an
incoming radiationfieldwith frequency pω resonant with the fundamentalmode and an array of nano-

Figure 1.Plasmonmodes in the graphene triangular nanoisland. (a), (b) Induced electric field distribution associatedwith thefirst (a)
and second (b) harmonicmodes, respectively. The graphene structure consists of an isosceles triangle with side lengthsD=22 nmand
d=16.9 nm, and a doping level EF=0.2 eVwith an intrinsic decay rate 3Γ = meV (decay time∼ 220 fs). (c) Extinction cross
section normalized to the area (S=169.6 nm2) of the triangles depicted in panels (a) and (b)with a strong fundamental dipolarmode
and a secondaryweaker dipolarmode.
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structures, as illustrated infigure 3.We expect that the efficient couplingwith an arraywill enable the incoming
photons to excite plasmons at pω , internally convert to plasmons at 2 pω , and then re-radiate into free-space as a
second harmonic signal.We consider here a hexagonal lattice of nanostructures with lattice period l=50nm.
The array is illuminated at normal incidence with afield of frequencyω, and polarized along x̂ tomaximally
drive the plasmon resonance (see figure 3).

FromHamiltonian (8) extended to include the coupling between the structures, we get the equations of
motion of the operators for thefirst and second harmonicmodes of structure i in the array are

( )

( )

a a
p

E ga b
p

G a

b b
p

E ga
p

G b

˙ i i 2 i 2i i ,

˙ i 2 i 2 i i i , (10)

i p a i
a a

j
ij j

i p b i
b b

j
ij j

ext
i
†

i

2

2
ext

i
2

2
2

p

p

∑

∑

ω Γ

ω Γ

= − − ′ − − +

= − − ′ − − +

ω
ω

ω
ω

 

 

where the last term in both equations accounts for the dipole–dipole interactionwith other nanostructures j in
the array, and G G r r( , )ij i j= is the electromagnetic Green’s function describing the field produced at position ri

by a dimensionless dipole oscillating at rj, while p c3a a p0
3 3πϵ κ ω=  is themodulus of the electric dipole

moment of a single plasmon in the firstmode (an equivalent expression holds for pb at frequency 2 pω ).We have
also included the possibility of driving eithermodewith classical free-space external fields, denoted by E ext

ω and
E2

ext
ω .
Before considering the generation of a second harmonic, it is already interesting to point out that the strong

internal interactions between plasmons canmanifest itself in the linear optical response to an incoming laser
with frequency near the secondmode 2 pω .We proceed by solving the coupled systemof equations (10) for a
weak external driving field of frequencyω around 2 pω .We consider specifically an approximationwhere edge
effects are ignored (which becomes exact in the plane-wave limit and an infinite array), whichmakes the sum

G
j

ij∑ identical for each element. As discussed in detail in appendixD the effect of theGreen function is to

Figure 2. (a) An given plasmonmode radiates into free space (ormore generally, into any desirable channel) with an efficiency
characterized by η. (b) By time-reversal symmetry, incoming photons in the same spatialmode excite plasmonswith the same
efficiency. The efficiency η is related to the extinction cross section and free-spacewavelength by (2 3) ext

0
2η π σ λ= .

Figure 3.Ahexagonal array of triangular nanostructures illuminated by laser light at normal incidence and frequency pω , resonant
with thefirst plasmonicmode of the structures. The nonlinear coupling between thismode and themode at frequency 2 pω generates
an outgoing radiation field at this second harmonic, which is in a direction normal to the array.
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renormalize both the resonance frequencies and the losses, so that ˜ , ˜
p p a aω ω Γ Γ→ ′ → ′, etc.Wefind that the

linear reflection coefficient of the array is

r
N

g
( )

i

2

˜ i ˜

˜ i ˜ ˜ i ˜ 2 2
, (11)b

b a a

a a b b
2

0
2

⎡⎣ ⎤⎦⎡⎣ ⎤⎦
ω

κ δ Γ
δ Γ δ Γ

= − + ′

+ ′ + ′ −
λ

where ˜ 2 ˜a pδ ω ω= − is the detuning of the inputfieldwith respect to two times the renormalized first harmonic
SP frequency, and similarly for b̃δ . The quantity N A(3 2 )( 2)0

2
0
2 π λ=λ is proportional to the number of

structures in a diffraction limited area 0
2λ , asA is the area of a unit cell in the array. Infigure 4, we plot r ( )b

2ω∣ ∣ as
a function of the detuning for different values of the ratio gΓ′ . Herewe have ignored the renormalized
detunings, ĩ iδ δ→ for i a b,= , as the structure dimensions can be slightly altered to compensate for these shifts.
We also takeQ=100 andQ=50 formodes a and b, respectively. Note that if the nonlinear interaction between
plasmons is negligible (g Γ≪ ′), the spectrum exhibits the typical Lorentzian peak associatedwith a resonant
scatterer.We observe a qualitative difference in the reflection curve passing from the regime g 2Γ< ′ to the
regime inwhich g 2Γ> ′ , which is characterized by the appearance of a splitting in the reflection curve.
Importantly, while an efficient external coupling increases the peak reflection of the structure, themagnitude of
themode splitting g2 2 does not depend on the coupling efficiency and represents a robust signature of
quantum strong coupling between the SPsmodes.We also emphasize that equation (11) is only obtained by
solving fully the equations (10), including quantum correlations between the two plasmonmodes. Solving the
classical limit, inwhich all quantumoperators are replacedwith numbers, would produce a Lorentzian spectrum
for any value of g, which reinforces the appearance of amode splitting as a quantum signature.

In a similar way, we can calculate the intensity emitted at frequency 2 pω , when the system is driven at
frequency pω by a classical externalfield.Wefind that the SHG signal intensity radiated into the farfield is
approximately (see appendixD for the derivation)

I
g

A
I

8
, (12)

p a b

a b

2
far

2

2

ext 2 ext

2
ext 2

p p

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ω Γ Γ

σ σ
≈

′ ′ω ω

where a b,
extσ are the extinction cross sections of the twomodes. This expression is valid in the undepleted pump

approximation, where the converted intensity is a small fraction of the incident. Using the previously quoted
parameters for the triangular nanostructure, we find that a 1%conversion efficiency can be observed for the low
driving intensity of roughly 108Wm−2.

While we have presented here a semi-classical calculation, inwhich the input fields are treated as classical
numbers, it would be interesting tofindwhat is the conversion efficiency at the single-photon level. In
particular, it would be interesting to see how graphene compares to the state-of-the-art efficiencies of 10 8∼ − in
bulk crystals for SHGof just a two-photon input. For this purpose, in the next sectionwe use an approach based
on the S-matrix formalism.

4.Quantum frequency conversion

In general, for a given few-photon input state, wewish to determine the effect of nonlinear interactions on the
output. All of this information is contained in the S-matrix [44], which specifically describes the overlap
amplitude between a set ofmonochromatic incoming and outgoing freely propagating photons. Because
monochromatic photons form a complete basis, the S-matrix thus contains all information about photon

Figure 4.Back-scattered spectrumaround 2 pω . Reflectance curves for a weak driving field as a function of the detuning δ (in units of
the total decay rate Γ′) from the secondmode of frequency 2 pω , plotted for different values of the ratio g Γ′. The value of the solid
curve corresponds to the ratio g 1.25Γ′ = that we have predicted theoretically for the structure presented infigure 1.
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dynamics. In particular, it can be used to determine how awave packet consisting of a superposition of
monochromatic photons (i.e. decomposed into frequency components) interacts with the graphene
nanostructure.

A simple example of an S-matrix element consists of the linear reflection amplitude rb(k) of a single photon
of frequency kb, which interacts with the higher-frequency SPmode (mode b), whichwe have calculated in the
previous section by solving theHeisenberg equations ofmotion. In the S-matrix language the reflection
coefficient corresponds to thematrix element between an incoming photon propagating in one direction (say to
the right) and a photon of the same frequency pb= kb scattered in the other direction (to the left).More
compactly, this relation is formally written as p S k r k k p( ) ( )b

L
b
R

b δ〈 ∣ ∣ 〉 ≡ − , where k p( )δ − denotes theDirac
delta function. Such an S-matrix element can be calculated by using standard input–output techniques [44, 45],
which enable one to relate the outgoingfield (after interaction) to the incoming field and internal dynamics of
the nanostructure (governed by theHamiltonian of equation (8)).We assume that the incoming photon is
focused at the diffraction limit, S 0

2λ∼ , and interacts with N N
0
2≡ λ structures. In appendix E, we show that the

resulting reflection coefficient gives a result of the formof equation (11).
Analogously, we can express the amplitude for theDCprocess as the S-matrix element between an incoming

photon of frequency kbnear 2 pω and two outgoing photons of frequencies p q,a a near pω . For simplicity we
study the case inwhich the incoming photon is a superposition of a photon coming from the right and one
coming from the left so that we can avoid directional labels.We thusfind for an array ofN structures

p q S k C r k r p r q k p q, ( ) ( ) ( ) ( ), (13)a a b b a a δ= − −

where ra, rb are respectively the reflection coefficients for photons inmode a and b, and C Ng2 2 a b
2πκ κ= (see

appendix E).
The S-matrix also enables one to calculate the dynamics of an incoming pulse. In particular, assuming a

single-photon inputwavepacket with a Fourier transform given by f(k), wefind that the total DC efficiency is
given by P p q f p q r p q r p r q1 2 d d ( ) ( ) ( ) ( )b a aDC

2∫= ∣ + + ∣ . For a nearmonochromatic resonant incoming

photon, i.e. f k k( ) ( 2 )p
2 δ ω∣ ∣ ≈ − , the result simplifies to

P
N g

g

16

4
, (14)a b

a a b

DC

2 2 2

2 2⎡⎣ ⎤⎦
κ κ

Γ Γ Γ
=

′ ′ ′ +

where NΓ Γ κ′ = + . The value of the coupling constant thatmaximizes the probability of conversion is
g 2a bΓ Γ= ′ ′ , for whichwe have

P N . (15)a

a

b

b
DC

2
2⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

κ
Γ

κ
Γ

=
′ ′

In general, we expect g to exceed the plasmon linewidth in the graphene nanostructure considered, so that
the condition g 2a bΓ Γ= ′ ′ is satisfiable, in contrast to conventionalmaterials withweak nonlinear coefficients.
Forwhat concerns the optimal number of nanostructures, we identify two limits, one of low external coupling
efficiency inwhich the array-enhanced external coupling does not overcome the losses i.e. κ Γ≪ , and the
opposite case inwhich κ Γ≳ . In thefirst limit, which is satisfied for the systemparameters presented earlier, the
total decay rate Γ′ is roughly independent of the number of structuresN and P N a bDC

max 2 2η η≈ (we recall again
that i i iη κ Γ= ). It is clear that in this limit the use of an array of nanostructures is an efficient way to increase the
conversion (which anyway remainsmuch smaller than 1). For our systemparameters, wefind that P 10DC

max 7≈ − ,
which compares favorably with state-of-the-art numbers∼ 10−8, a surprising result considering that graphene is
not a bulk nonlinear crystal. In the opposite limit of good external couplingwefind that P N a bDC

max 1 2η η= − . This
remarkable result indicates that ultimately, there is a fundamental inequivalence between usingmany structures
to increase the (linear) response, andworking to improve the coupling to just a single structure. In particular, in
the limit of efficient coupling, the strong nonlinear interaction between plasmons becomes diluted by having
multiple structures. Intuitively, this N 1− scaling can be understood from the complementary process of SHG
(whose S-matrix is identical toDC, as shown later). Clearly, in order for two incoming photons to create a
second harmonic, theymust excite two plasmons in the same structure. However, withmany structures, the
probability that this occurs (i.e. compared to exciting single plasmons in two different structures) falls like N 1− .
We thus argue that the development of techniques [21, 29] to efficiently couple to single structures is of
fundamental importance to takemaximal advantage of the strong intrinsic nonlinear interactions between
graphene plasmons.

It should further be noted that the created photon pairs are frequency-entangled (see equation (13)), as
energy conservation requires that the sumof their frequencies equals that of the incoming single photon.
Intuitively, one expects that theDCprocess remains efficient as long as the incoming pulse bandwidth σ is
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smaller than the cavity linewidth Γ′. This can be seen quantitatively infigure 5(a), whereGaussian single-
photon inputs with bandwidth σ are considered, i.e. ( )f k( ) e k 4p

2 2∝ ω σ− − .
In SHG two photonswith frequencies centered around pω are (partially) converted in a single photon of

frequency 2 pω . By the time reversal symmetry of the scatteringmatrix the relation p q S k,a a b〈 ∣ ∣ 〉 =
k S p q, *b a a〈 ∣ ∣ 〉 holds. This implies that in principle, amaximumup-conversion efficiency of P PSHG

max
DC
max= can

be achieved, but only if the two-photon input itself is an entangled state. Infigure 5(b), we consider themore
realistic case of two identical, separate photons, each represented as aGaussian pulse of width σ. It can be noticed
the qualitatively different functional behavior ofPDC andPSHG. The latter saturates at a lower value than the
former and exhibits amaximum for afinite value of σ, going to zero for both the limits 0σ → and σ → ∞. The
inability to deterministically up-convert two separate photons (P 1SHG = ), even for perfect coupling efficiencies,
notably deviates from the semiclassical prediction that perfect conversion can be achieved [37].

We conclude showing that a single graphenenanostructure can generate nonclassical lightwhen irradiated
withweak classical light at the lower frequency.Wehave seen above that in the strong quantumcoupling regime,
g 2Γ> ′ , amode splitting at the second resonance appears. Physically, this splitting arises because thenonlinear
interaction given in theHamiltonian of equation (8) stronglymixes a single photon 0; 1∣ 〉 inmode 2 pω with two
photons 2; 0∣ 〉 inmode pω , as shown infigure 6(b). The resulting eigenstates of theHamiltonian are symmetric

and antisymmetric combinations 0; 1 2; 0∣ 〉 ± ∣ 〉with frequencies g2 2pω ± . Themode splitting creates an
effective nonlinearity: once a single plasmonof frequency pω enters the system, the absenceof a resonant state at
2 pω prevents a secondplasmon fromentering, creating a blockade effect [35]. This is a complementary signature of
strong coupling observable in the lowermode. It canbequantified by considering the second-order correlation
function of back-scatteredphotons (for instance left-propagating photonswhen the system is driven by right-

Figure 5. Single-photonDCand SHGnormalized probabilities. (a) Probability of DC for a photon in aGaussianwavepacket of center
frequency 2 pω and bandwidth σ. PDC is plotted as function of σ and g (in units of Γ′), and normalizedwith respect to PDC

max . (b)
Probability of SHG for a pair of uncorrelated photons inGaussianwavepackets of center frequency pω and bandwidth σ, normalized
as in (a).

Figure 6.Quantum light generation in a graphene triangular nanoisland. (a) Schematic showing the creation of non-classical light. A
coherent state beam (yellow) of frequency pω incident on the graphene is scattered and produces anti-bunched light (red). (b) Energy
level structure of the system,where the notation m n,∣ 〉 indicates the occupation of m n( )plasmons inmode (2 )p pω ω . The dressed
states generated by the coupling between 2; 0∣ 〉 and 0; 1∣ 〉 are also represented. Red arrows illustrate the origin of photon blockade.
Due to the nonlinear coupling, the nominally degenerate states 2; 0∣ 〉 and 0; 1∣ 〉hybridize into two dressed states with frequencies

g2 2pω ± .When the fundamentalmode is resonantly driven, the population of thatmode by a single photon (solid red arrow)
blocks the excitation of a second photon (dashed red arrow), as themode hybridization results in the absence of a state at 2 pω .
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propagating laser light) g t( )(2) = a a t a t a a a( ) ( ) ( ) ( ) ( ) ( )L L L L L L,out
†

,out
†

,out ,out ,out
†

,out
2τ τ τ τ τ τ〈 + + 〉 〈 〉 . The

outputfield itself is related to the inputfield andplasmonmode by the equation a a a2L L a,out ,in κ= + .
However, as the left-going inputfield is in the vacuumstate, the corresponding input operator hasno effect. Thus
the second-order correlation function can bewritten directly in termsof the plasmonmode a, g t( )(2) =
a a t a t a a a( ) ( ) ( ) ( ) ( ) ( )† † † 2τ τ τ τ τ τ〈 + + 〉 〈 〉 . For t=0 this function indicates the relative probability to detect
twophotons at the same time.Values of g (0) 1(2) < indicate the presence of nonclassical light. In the limit ofweak
driving amplitudewefind that

( )
( )

g
g

g
(0)

16 3

3 4
. (16)

a
(2)

2 2 2

2 2 2

Γ Γ

Γ
=

′ + ′

+ ′

For g=0 it acquires a value of g (0) 1
a
(2) = , reflecting the coherent state statistics of the laser, while exhibiting

strong anti-bunching g( (0) 1)
a
(2) < when g 2Γ≳ ′ . It is particularly important that g (0)

a
(2) is independent of the

external coupling efficiency κ Γ′, thusmaking this effect a robust signature of strong quantum coupling between
plasmonmodes.

5.Outlook and conclusion

Wehave shown that second-order nonlinear optical interactions between plasmons in graphene nanostructures
can be remarkably strong. Signatures of such nonlinearities should be immediately observable in experiments
involving arrays of nanostructures, where incident free-space light can undergo frequencymixing at very low
input powers via interactionwith plasmons.

We further show that single nanostructures should exhibit the capability to generate non-classical states of
light, observable evenwith low coupling efficiencies, which opens up a novel route to quantumoptics as
compared to the conventional approach of using atom-like emitters.With improved coupling efficiencies to the
modes of these nanostructures, it would become possible to realize efficient second-harmonic generation or
down-conversion at the level of a few quanta, whichwould exceed the capabilities of current systems by several
orders ofmagnitude.While we focused on one concrete example consisting of a graphene nanotriangle, our
conclusions are quite adaptable. Thus, it would be interesting to explore further the potential of this unique
‘nonlinear crystal’ in awide variety of classical and quantumnonlinear optical devices. It would also be
interesting to investigate the nonlinear optical response of even smaller structures [46, 47], which is expected to
deviate significantly from large-scale graphene due to quantumfinite-size effects. Finally, we anticipate that our
workwill open up the intriguing possibility of a search for newmaterials that are capable of attaining the
quantumnonlinear regime.
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AppendixA. Semiclassical derivation of the second-order conductivity

Wecalculate in this section of the appendix the second-order conductivity of extended graphene. In themain
text, we apply this result to afinite-size structure. In principle, it should be noted that the response of afinite-size
structure is not spatially homogeneous, and applying the conductivity functions for extended graphene is an
approximationwhich likely gives an error of F pλ λ∼ . An exact treatment for finite structures requires the
calculation of the response function, which involves intensive numerical computations [46].

As explained in themain text, we use a semiclassical single-band approach describing the dynamics of
carriers in graphene, which is nominally a zero-gap semiconductor. However, by techniques such as electrostatic
gating [16], one band can become partly filledwith carriers.We characterize the carriers within this band by the
distribution function f tr( , )k which is defined so that

N f tr k rd ( , )d d (A.1)k
2 2=

is the number of carriers with positions lyingwithin a surface element rd2 about r andmomenta lyingwithin a
momentum space element kd2 about k , at time t.When collisions between carriers are neglected, a conservation
equation is satisfied by the function f tr( , )k (equation (1) of themain text [30]). In Fourier space it can be
written in the form
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( )
f

e

v

f
q

k q

p
E q p

p

k
( , )

i
ˆ ·

d

(2 )

d

2
( , ) ·

( , )
, (A.2)

F
k

k
2

2∫ ∫ω
ω π

ν
π

ω ν
ν

=
∓

− −
∂

∂−∞

∞



which exhibits a nonlinear character.We assume that the electricfield perturbs the equilibriumdistribution
weakly so that we can solve the equation (1) iteratively, obtaining a perturbation series in E for the distribution
function.

At zero order, ignoring finite-size effects as noted above, we simply replace the distribution function on the
RHSwith the (zero temperature) Fermi distribution f t k kr( , ) ( )Fk

(0) θ= − , obtaining as solution the first order
contribution to the conductivity, which is linear in the electric field:

( )
( )f

e

v
k kq

k E q

k q
( , )

i ˆ · ( , )

ˆ ·
. (A.3)

F

Fk
(1) ω

ω

ω
δ= −

∓
−



In turn, inserting equation (A.3) into equation (1) of themain text, we get the second-order contribution

( )

( )
( )

f
e

v

v
k k

q
k q

p
E q p

k

k E p

k p

( , )
ˆ ·

d

(2 )

d

2
( , ) ·

ˆ · ( , )

ˆ ·
. (A.4)

F

F

F

k
(2)

2

2

2

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

∫ ∫

ω
ω

π
ν
π

ω ν
ν

ν
δ

=
∓

× − − ∂
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−
−∞

∞





Moreover equation (2) of themain text

t eg g f tJ r
k

v r( , )
d

(2 )
( , ), (A.5)v s k k

2

2∫ π
= −

provides a relation between themacroscopic density of electric current and themicroscopic distribution
function. Inserting the elements of the series we got for the distribution function, and taking into account the
definition of nth-order conductivity, we obtain that

( )
( )

e g g v k k

k v
k kq

k

k q
( , )

i d

(2 ) ˆ ·
, (A.6)ij

v s F i j

F

F
(1)

2 2

2 2
∫σ ω

π ω
δ=

∓
−



and

( )( )

( ) ( )
( )

e g g v

k v v

k
k v

k k k
v

k v
k q k k k

q q p p
k

k q k p

k q k q

( , ; , , , )
d

(2 )

1
ˆ · ˆ ·

ˆ · ˆ ·
, (A.7)

ilm
v s F

F F

il m

F

i l m
F

F

i l m F

(2)
3

2

2

2 2

2

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

∫σ ω ω ν ν
π ω ν

δ ω
ω ω

δ

− − =
∓ ∓

× −
∓

±
∓

−



where the integration over k is on a circle of radius kF, because of the linearization of the band.
Analytical results can be obtained in the long-wavelength limit (v q 1F ω ≪ ), by expanding the

denominators in q and p. The dominant contribution to the linear conductivity is the zero-order one, giving rise
to thewell-known local Drude conductivity of graphene displayed in the equation (3) of themain text.

For the second-order conductivity, it can be easily proven that the zero-order expansion in q and p of
equation (A.7) gives a vanishing contributionwhen the integral is performed, so that the dominant term is the
first-order expansion in q and p, which corresponds to a nonlocal contribution.

The results are given by

( )

( )

e g g v
q q q

p p p

q q p p( , ; , , , )
16

2

1
3 . (A.8)

ilm
v s F

il m lm i im l

il m lm i im l

(2)
3 2

2 2

2

⎡
⎣⎢

⎤
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σ ω ω ν ν
π ω ν

δ δ δ

ων
δ δ δ

− − = ± − +
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With the formula for the conductivity above, the expression

J

E E

q
p

q q p p

q p p

( , )
d

(2 )

d

2
( , ; , , , )

( , ) ( , ), (A.9)

i ilm

l m

(2)
2

2
(2)∫ ∫ω

π
ν
π

σ ω ω ν ν

ω ν ν

= − −

× − −
−∞

∞

can be Fourier transformed back to the real space, resulting finally in equations (4) and (5) of themain text.
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Appendix B.Quantization of the two-mode structure energy and derivation of the
conversion rate g

In the limit D 10λ ≪ , whereD is the linear dimension of the graphene structure and 0λ is the incident radiation
wavelength, the electrostatic approximation can be assumed. Thus, the total energy present in the structure is
given by

H r r r
1

2
d *( ) ( ), (B.1)

S

2

i

i i∫∑ ρ ϕ=
ω

ω ω

where ρ is the charge density andϕ the electrostatic potential. Implementing the continuity equation, the
relation between the potential and the electric field, andwriting explicitly the two frequencies contributions, we
get that the total energy is given by

H J E J Er r r r r r
1

2i
d *( ) ( )

1

4i
d *( ) ( ). (B.2)

p S
i i

p S
i i

2 2 2 2p p p p∫ ∫ω ω
= +ω ω ω ω

The currents can be expressed in terms of the electric fields: J E( )i p i
(1)p pσ ω=ω ω

, while Ji
2 pω is given by

equation (4) of themain text.
At this point, we can impose the quantization condition to thefirstmode:

E a ar r
( )

2i
d ( ) , (B.3)

p

p S
i p

(1)
2 2 †p∫σ ω

ω
ω=ω 

which can be enforcedwith the substitution E E a E f ar r r( ) ˜ ( ) ( )i i i0
p p p p→ =ω ω ω ω

. Here, f r( )pω is a vectorial
functionwhich describes the geometry of themode and normalized such that f rmax ( ) 1p∣ ∣ =ω ,
E q S( )p p0 0

1 2p ω ϵ μ=ω  is themaximum single-photon electricfield amplitude, and S Seff
pμ = ω

, where

S fr rd ( )
S

ieff
2 2p p∫= ∣ ∣ω ω

is the ratio between the effectivemode area and the physical area of the structure.

Nowwe consider themode at frequency 2 pω .We substitute the current shown in equation (4) into
equation (B.2), and similarly define a single-photon electric field amplitude and annihilation operator b for this
mode. This procedure yields a non-interacting term in theHamiltonian, b b2 p

†ω , and an interacting term

( )H E E E a br r r r
1

4i
2 ; d ˜ ( ) * ˜ ( ) ˜ ( ) h. c. (B.4)

p
ijkl p p

S
i j k lint

(2) 2 2 2 †p p p⎡⎣ ⎤⎦ ∫ω
σ ω ω= +ω ω ω

Note that using the freedom in the definition of the phases of Ẽi
pω
and Ẽi

2 pω we canmake the expression in front
of a b2 †, g , to be real, obtaining in this way equation (9) of themain text.

If we express E r˜ ( )l
pω

as E f r( )i0
p pω ω

, in order to separate the geometric part of the problem,we get that the
ratio between g and pω is equal to
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wherewe have called the tensorial part of the second-order conductivity (5 3 )ijkl ij kl ik jl il jkΘ δ δ δ δ δ δ= − + . Now

wemake the lengths in the integral dimensionless, introducing Dr rˆ = and D̂ = . Furthermore, we
introduce the dimensionless parameter D S S[ ]1

3
eff eff

2 1 2p pξ = ω ω
. From equation (B.5), we obtain the final

expression

( ) ( ) ( )g v

E D E
f f fr r r r
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d ˆ ˆ ˆ ˆ ˜ . (B.6)

p

F

F p F

ijkl
S

i j k l

2 2

2

1 2

1
2 2 p p p
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π
ω

ξ Θ= ∓ ω ω ω


Note that now the integral in the last expression is fully dimensionless and depends only on the geometry of the
twomodes.

In a general way, the plasmon frequency pω is related to the dimension of the structure and the doping by the
relation [39]

c E

D

2
, (B.7)p

F
2

1 2
⎜ ⎟⎛
⎝

⎞
⎠ω ξ α=


where 2ξ is a factor of order one that depends only on the shape of the structure considered, α is thefine-structure
constant, and c is the speed of light. Using this relation in equation (B.6), and considering that E v kF F F∣ ∣ =  , we
finallyfind
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( )
g

k D
, (B.8)

p F
7 4ω

β=

wherewe have collected in β all the geometric dimensionless factors

( ) ( ) ( )v

c
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2 1 4
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⎛
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ξ
π

α
Θ= ω ω ω

Note that, while the scaling of the nonlinearity as k D( )F
7 4− is a completely general result, the individual

terms appearing in β are defined in a somewhat arbitrary way. For instance, choosingD to be the length of the
short side of a triangle instead of that of the long one, as done for the numerical example in the paper, affects the
numerical values of 1ξ and 2ξ .

AppendixC. Radiative decay rate computation

There are twoways of obtaining the radiative decay rate of the graphene triangle, one through the extinction
cross section, and the other directly through the dipolemoment.

When using thefirstmethod, we assume that the polarizability of the graphene triangle can be expressed as a
Lorentzian line shape [48]

c
( )

6 1

i
, (C.1)a

p p p

0
3

2 2 2 3 2
α ω πϵ κ

ω ω ω Γ ω ω
=

− − ′

with pω being the plasmon frequency, Γ′ the total decay rate, and aκ the radiative contribution to Γ′. On the
other hand, the extinction cross section is directly related to the polarizability by c( ) ( )Im{ ( )}ext

0σ ω ω α ω ϵ=
[49]. The combination of the two former equations at the plasmon frequency results in thefinal expression for
the radiative decay

c
( )

( )

6
. (C.2)a p

p p
2 ext

2
κ ω

ω σ ω
π

Γ= ′ 

Thus, we can get the value of the radiative decay by obtaining numerically the extinction cross section at the
plasmon frequency.

In the secondmethod, the radiative decay is calculated directly from the knowledge of the induced dipole
moment p of the plasmonmodes of the triangle, which are numerically computed from COMSOL®. Indeed, the
radiative decay of a dipole is given by [50]

c
p( )

3
, (C.3)a p

p
a

3

0
3

2
κ ω

ω
πε

=

where the dipolemoment p r rda
S

a
2∫ ρ= of themode can be related to the single-plasmon electric field by the

continuity equation E( i ) · ˜
a

(1) ρ σ ω= − ∥ .

AppendixD. Secondharmonicfield generated by a hexagonal lattice of nanostructures
under strong driving

Assuming that the lattice is large enough that edge effects can be ignored, the dipoles will respond identically,
so that in equation (10) of themain paper we get a aj = and b bj = , and the interaction between them

reduces to finding the sum G G
j

ij∑= . For a hexagonal lattice this sum consists of a real part that can be

approximated as G lRe[ ] (1 4 )5.20
3πϵ≈ω and an imaginary contributionwhose exact expression is

G cA cIm[ ] (1 4 )[2 2( ) 3]0
3πϵ πω ω= −ω [43], where A l 3 22= is the area of the unit cell.We now focus

on the case of SHG, where the fundamental mode is driven by a strong external inputfield with frequency
around pω , while the highermode is undriven (E 02

ext =ω ). In the strong field limit, we can replace the
operators with numbers.We can solve for the dipolemoments in the frequency domain,

b
p

G ga

p
ga

2 2 i 2

˜ (2 ) (D.1)

p b
b

b

b

2
2

1

2

2
2

p

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ω ω Γ

α ω

= − + +

= −

ω
−
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Ignoring the depletion of a due to b (an approximation validwhen a b≫ ):

a
p

G
p

E

E

p

i 2

˜ ( ). (D.2)

p a
a a

a
a

2 1

ext

ext

p

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ω ω Γ

α ω

= − + +

= −

ω
ω

ω

−

 

In the previous two equationswe have defined ˜ ( )aα ω as

( )
p

p
G

p
˜ ( )

i 2
˜ ( ) i ˜ 2

, (D.3)a
a

p a
a

a

a a

2

2

2

p

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

α ω

ω ω Γ
δ ω Γ

=
−

− + +

=
−

+ω




and similarly for ˜ ( )bα ω . They correspond to the polarizabilities in the proximity of the resonances,modified by
the interaction between the structures of the array. Here, ˜ ( )aδ ω and ãΓ are the detuning and the linewidth of the
plasmonicmode renormalized respectively by the real and the imaginary part of theGreen function. Inserting
equation (D.2) in (D.1) andmultiplying by the dipolemoment of a single plasmon in the secondmode, we find

p
g

p p
E( ) ˜ ( ) ˜ ( ) . (D.4)

a b
a b2 2
2 ext 2

p

⎡⎣ ⎤⎦ω α ω α ω= −ω ω


For the lattice constant of interest, the far-field is emitted only in the perpendicular direction [43], and the
far-field intensity at frequency 2 pω under driving at frequency pω can be directly calculated as

I
c A

p
c

g

c A p p
I

g

A
I

( )
2

2
˜ ( ) ˜ ( )

8
˜ 4 ˜ ˜ 4 ˜ , (D.5)

p
p

p

a b

a b

a b

p

a b

a a b b

2
far

0
2

2
0

2 2 2

3
0
3 2 4 2

ext 2 4 2

2 2 ext 2 ext

2
ext 2 2 2 2 2 2 1

p p

p

p

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

ω
ϵ

ω ϵ

ω
ϵ

α ω α ω

Γ Γ
ω

σ σ
Γ δ Γ δ

=

=

= ′ ′
+ +

ω ω

ω

ω
− −





where I c E[ ] 2ext
0

ext 2
p p

ϵ=ω ω .

Nowwe can calculate the efficiency of conversion using the values obtained for the triangular nanoisland
with quality factorQ=100, i.e. 2 10a p

7κ ω≈ × − , 5.4 10b p
8κ ω≈ × − , and 10a b p

2Γ Γ ω′ = ′ = − ,
g 1.25 10 p

2ω= × − .We assume that the lattice period is l=50 nm. Thewave vector of the driving light at
frequency pω is k 1≈ m 1μ − .Wefirst calculate the effect of the array on the frequency and the linewidth. The
frequency of thefirst harmonic is redshifted by 6 10 p

3ω× − , while for the second one the redshift is 2 10 p
4ω× − .

Furthermore, the linewidths aΓ′ and bΓ′ are increased by around 17%and 1% respectively, thuswe can neglect
the effects on the second harmonic.Wefinallyfind

I I10 W m , (D.6)2
far 10 1 2 ext 2

p p

⎡⎣ ⎤⎦∼ω ω
− −

an expression valid only when I I2
far ext

p p
≪ω ω . This calculation indicates that one can observe 1%of intensity

conversionwhen the driving field has an intensity of about 108 W m 2− .

Appendix E. Few-photon scattering amplitudes

In this section, we present the combined S-matrix and input–output formalismof [44], which is very helpful to
study few-photon scattering amplitudes.We show the equations for a single structure, explaining how to
generalize them to the case of the array at the end of the section.Wemodel the incident radiation as a one-
dimensional bidirectional continuum,with the two SPmodes coupled to it at rates aκ and bκ . TheHeisenberg
equations ofmotion for the internalmode operators, written in terms of the input operators, are given by [45]

( )

( )

a

t
a gba F F

b

t
b ga F F

d

d
i i 2 2i ,

d

d
i 2 i 2 i . (E.1)

p a
a a

p b
b b

†
in loss

2
in loss

ω Γ

ω Γ

= − − ′ − + +

= − − ′ − + +

Here F ai 2a
a

j L R

j
in , in∑κ= −

=
describes coupling from input channels, F aia

loss lossγ= − describes coupling

to loss channels.We have labeled the two directions of propagation for the external light as L andR. The relations
between input, output and cavity operators are
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a t a t a t( ) ( ) i
2

( ), (E.2)j j a
out in

κ= −

b t b t b t( ) ( ) i
2

( ), (E.3)j j b
out in

κ= −

with j L R,= . These equations enable one to calculate the properties of the outgoing field based upon the
incoming field properties and dynamics of the graphenemodes.

The reflection coefficient for a photon propagating in the right direction can be clearly expressed in termof
the S-matrix elements

p S k b p b k0 ( ) ( ) 0 . (E.4)
b
L

b
R L R

out in
†= 〈 ∣ ∣ 〉

Using the Fourier transformof equation (E.3)

b p b p b p( ) ( ) i
2

( ) (E.5)L L b
out in

κ= −

to express the output operator in equation (E.4), we get that

p S k b p k p b t ki
2

0 ( ) i
4

d 0 ( ) e . (E.6)
b
L

b
R b

b
R b

b
R pti∫κ κ

π
= − ∣ = − ∣

Todetermine thismatrix element, we use the equation ofmotion (E.2) for the operator b. Using the
commutation relations between the different input operators, b k b k k k[ ( ), ( )] ( )R R

in in
† δ′ = − ′ ,

b k b k[ ( ), ( )] 0R L
in in

† ′ = , etc, we see that only the termwith b R
in remains:

( )
t

b t k b t k

g a t k b t b k

d

d
0 ( ) i 2 i 2 0 ( )

i 0 ( ) i
2

0 ( ) ( ) 0 , (E.7)

b
R

p b b
R

b
R b R R2

in in
†

ω Γ

κ

∣ = − − ′ ∣

− ∣ − 〈 ∣ ∣ 〉

where the last term can be immediately calculated using the Fourier transformof thefirst operator. Similarly,
using the equation ofmotion for the operator a2, one finds the equation

( )
t

a t k a t k g b t k
d

d
0 ( ) 2i i 0 ( ) 2i 0 ( ) . (E.8)b

R
p a b

R
b
R2 2ω Γ∣ = − − ′ ∣ − ∣

The last two equations constitute a closed systemof differential equations in b t k0 ( ) b
R〈 ∣ ∣ 〉 and a t k0 ( ) b

R2〈 ∣ ∣ 〉,
which can be solved by Fourier transformation. Inserting the results for the former element in equation (E.6), we
finally get that

p S k r k p k( ) ( ), (E.9)
b
L

b
R

b δ= −

with rb(k) given by

r k
g

( )
i

2

i

i i 2 2
. (E.10)b

b k a

k a k b
2⎡⎣ ⎤⎦⎡⎣ ⎤⎦

κ δ Γ
δ Γ δ Γ

= − + ′
+ ′ + ′ −

With a very similar procedure, the S-matrix elements can be calculated for the down-conversion of a single
photon. By a symmetry argument, one readilyfinds that theDCprobability ismaximizedwhen the single
photon is impinging symmetrically from themodes L R, . Provided this condition, we can introduce the
symmetricmode a a a1 2 ( )R L

in in in= + (and similarly for bin and the outputmodes) in the equations (E.1)–
(E.3), and consider a vacuum input in the anti-symmetricmode. The starting point of the calculation is again the
expression of the S-matrix element in termof input and output operators:

p q S k a p a q b k, 0 ( ) ( ) ( ) 0 . (E.11)a a b out out in
†= 〈 ∣ ∣ 〉

Forwhat concerns the generalization to an array ofN structures, one has only to replace equations (E.2)–
(E.3)with

a t a t N A t( ) ( ) i ( ). (E.12)aout in κ= −

b t b t N B t( ) ( ) i ( ), (E.13)bout in κ= −

where A t N a t( ) ( )
i

i
1 2 ∑= − and B t N b t( ) ( )

i
i

1 2 ∑= − are collectivemodes, and solve similar differential

equations.
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