159 research outputs found

    Adaptive fair channel allocation for QoS enhancement in IEEE 802.11 wireless LANs

    Get PDF
    The emerging widespread use of real-time multimedia applications over wireless networks makes the support of quality of service (QoS) a key problem. In this paper, we focus on QoS support mechanisms for IEEE 802.11 wireless ad-hoc networks. First, we review limitations of the upcoming IEEE 802.11e enhanced DCF (EDCF) and other enhanced MAC schemes that have been proposed to support QoS for 802.11 ad-hoc networks. Then, we describe a new scheme called adaptive fair EDCF that extends EDCF, by increasing the contention window during deferring periods when the channel is busy, and by using an adaptive fast backoff mechanism when the channel is idle. Our scheme computes an adaptive backoff threshold for each priority level by taking into account the channel load. The new scheme significantly improves the quality of multimedia applications. Moreover, it increases the overall throughput obtained both in medium and high load cases. Simulution results show that our new scheme outperforms EDCF and other enhanced schemes. Finally, we show that the adaptive fair EDCF scheme achieves a high degree of fairness among applications of the same priority level

    An embedding scheme for the Dirac equation

    Full text link
    An embedding scheme is developed for the Dirac Hamiltonian H. Dividing space into regions I and II separated by surface S, an expression is derived for the expectation value of H which makes explicit reference to a trial function defined in I alone, with all details of region II replaced by an effective potential acting on S and which is related to the Green function of region II. Stationary solutions provide approximations to the eigenstates of H within I. The Green function for the embedded Hamiltonian is equal to the Green function for the entire system in region I. Application of the method is illustrated for the problem of a hydrogen atom in a spherical cavity and an Au(001)/Ag/Au(001) sandwich structure using basis sets that satisfy kinetic balance.Comment: 16 pages, 5 figure

    ALG-2 and peflin regulate COPII targeting and secretion in response to calcium signaling

    Get PDF
    ER-to-Golgi transport is the first step in the constitutive secretory pathway, which, unlike regulated secretion, is believed to proceed nonstop independent of Ca2+ flux. However, here we demonstrate that penta-EF hand (PEF) proteins ALG-2 and peflin constitute a hetero-bifunctional COPII regulator that responds to Ca2+ signaling by adopting one of several distinct activity states. Functionally, these states can adjust the rate of ER export of COPII-sorted cargos up or down by ∼50%. We found that at steady-state Ca2+, ALG-2/peflin hetero-complexes bind to ER exit sites (ERES) through the ALG-2 subunit to confer a low, buffered secretion rate, while peflin-lacking ALG-2 complexes markedly stimulate secretion. Upon Ca2+ signaling, ALG-2 complexes lacking peflin can either increase or decrease the secretion rate depending on signaling intensity and duration—phenomena that could contribute to cellular growth and intercellular communication following secretory increases or protection from excitotoxicity and infection following decreases. In epithelial normal rat kidney (NRK) cells, the Ca2+-mobilizing agonist ATP causes ALG-2 to depress ER export, while in neuroendocrine PC12 cells, Ca2+ mobilization by ATP results in ALG-2-dependent enhancement of secretion. Furthermore, distinct Ca2+ signaling patterns in NRK cells produce opposing ALG-2-dependent effects on secretion. Mechanistically, ALG-2-dependent depression of secretion involves decreased levels of the COPII outer shell and increased peflin targeting to ERES, while ALG-2-dependent enhancement of secretion involves increased COPII outer shell and decreased peflin at ERES. These data provide insights into how PEF protein dynamics affect secretion of important physiological cargoes such as collagen I and significantly impact ER stress

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function

    Get PDF
    Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009; Guo et al., 2017; Jha et al., 2014; Ruas et al., 2015; Wang et al., 2012), depends on the activating ligand. A high-throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+-mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand

    Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function

    Get PDF
    Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009;Guo et al., 2017;Jha et al., 2014;Ruas et al., 2015;Wang et al., 2012), depends on the activating ligand. A high-throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+ mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P-2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand

    "I'm not being rude, I'd want somebody normal" Adolescents' perception of their peers with Tourette's syndrome; an exploratory study

    Get PDF
    Background: Tourette’s syndrome (TS) is a highly stigmatised condition, and typically developing adolescents’ motives and reason for excluding individuals with TS have not been examined. Aims: The aim of the study was to understand how TS is conceptualised by adolescents and explore how individuals with TS are perceived by their typically developing peers. Method: Free text writing and focus groups were used to elicit the views of twenty-two year ten students from a secondary school in South East England. Grounded theory was used to develop an analytical framework. Result: Participants’ understanding about the condition was construed from misconceptions, unfamiliarity and unanswered questions. Adolescents who conceived TS as a disorder beyond the individual’s control perceived their peers as being deprived of agency and strength and as straying from the boundaries of normalcy. People with TS were viewed as individuals deserving pity, and in need of support. Although participants maintained they had feelings of social politeness towards those with TS, they would avoid initiating meaningful social relationships with them due to fear of “social contamination”. Intergroup anxiety would also inhibit a close degree of social contact. Participants that viewed those with TS as responsible for their condition expressed a plenary desire for social distance. However, these behavioural intentions were not limited to adolescents that elicited inferences of responsibility to people with TS, indicating that attributional models of stigmatisation may be of secondary importance in the case of TS. Implications for interventions to improve school belonging among youths with TS are discussed

    The GPR55 agonist lysophosphatidylinositol acts as an intracellular messenger and bidirectionally modulates Ca2+-activated large-conductance K+ channels in endothelial cells

    Get PDF
    Lysophospholipids are known to serve as intra- and extracellular messengers affecting many physiological processes. Lysophosphatidylinositol (LPI), which is produced in endothelial cells, acts as an endogenous agonist of the orphan receptor, G protein-coupled receptor 55 (GPR55). Stimulation of GPR55 by LPI evokes an intracellular Ca2+ rise in several cell types including endothelial cells. In this study, we investigated additional direct, receptor-independent effects of LPI on endothelial large-conductance Ca2+ and voltage-gated potassium (BKCa) channels. Electrophysiological experiments in the inside-out configuration revealed that LPI directly affects the BKCa channel gating properties. This effect of LPI strictly depended on the presence of Ca2+ and was concentration-dependent, reversible, and dual in nature. The modulating effects of LPI on endothelial BKCa channels correlated with their initial open probability (Po): stimulation at low Po (<0.3) and inhibition at high Po levels (>0.3). In the whole-cell configuration, LPI in the pipette facilitated membrane hyperpolarization in response to low (0.1–2 μM) histamine concentrations. In contrast, LPI counteracted membrane hyperpolarization in response to supramaximal cell stimulation with histamine. These results highlight a novel receptor-independent and direct bidirectional modulation of BKCa channels by LPI on endothelial cells. We conclude that LPI via this mechanism serves as an important modulator of endothelial electrical responses to cell stimulation

    Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La–Lu

    Get PDF
    Relativistic basis sets of double-zeta, triple-zeta, and quadruple-zeta quality have been optimized for the lanthanide elements La-Lu. The basis sets include SCF exponents for the occupied spinors and for the 6p shell, exponents of correlating functions for the valence shells (4f, 5d and 6s) and the outer core shells (4d, 5s and 5p), and diffuse functions, including functions for dipole polarization of the 4f shell. A finite nuclear size was used in all optimizations. The basis sets are illustrated by calculations on YbF. Prescriptions are given for constructing contracted basis sets. The basis sets are available as an internet archive and from the Dirac program web site, http://dirac. chem. sdu. dk. © 2010 The Author(s)
    corecore