326 research outputs found

    A multiplex marker set for microsatellite typing and sexing of sooty terns Onychoprion fuscatus

    Get PDF
    OBJECTIVES: Seabirds have suffered dramatic population declines in recent decades with one such species being the sooty tern Onychoprion fuscatus. An urgent call to re-assess their conservation status has been made given that some populations, such as the one on Ascension Island, South Atlantic, have declined by over 80% in three generations. Little is known about their population genetics, which would aid conservation management through understanding ecological processes and vulnerability to environmental change. We developed a multiplex microsatellite marker set for sooty terns including sex-typing markers to assist population genetics studies. RESULTS: Fifty microsatellite loci were isolated and tested in 23 individuals from Ascension Island. Thirty-one were polymorphic and displayed between 4 and 20 alleles. Three loci were Z-linked and two autosomal loci deviated from Hardy-Weinberg equilibrium. The remaining 26 autosomal loci together with three sex-typing makers were optimised in seven polymerase chain reaction plexes. These 26 highly polymorphic markers will be useful for understanding genetic structure of the Ascension Island population and the species as a whole. Combining these with recently developed microsatellite markers isolated from Indian Ocean birds will allow for assessment of global population structure and genetic diversity

    Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution

    Get PDF
    Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth–death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.Universidad de Costa Rica/[814-B8-257]/UCR/Costa RicaUniversidad de Costa Rica/[814-B6-140]/UCR/Costa RicaIDEA WILD/[]//Estados UnidosSociedad Colombiana de Orquideología/[]/SCO/ColombiaFundação de Amparo à Pesquisa do Estado de São Paulo/[11/08308-9]/FAPESP/BrasilFundação de Amparo à Pesquisa do Estado de São Paulo/[13/19124-1]/FAPESP/BrasilSwiss Orchid Foundation/[]//SuizaRoyal Botanic Gardens, Kew/[]//InglaterraSwedish Research Council/[2019-05191]//SueciaSwedish Foundation for Strategic Research/[FFL15-0196]/SSF/SueciaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Jardín Botánico Lankester (JBL

    Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8

    Get PDF
    Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA.We also observed SNP-level “hypermutation” of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the R. solani genome sequence may prove to be a useful resource in future comparative analysis of plant pathogens

    Rapid identification of bovine MHCI haplotypes in genetically divergent cattle populations Using Next-Generation Sequencing

    Get PDF
    The major histocompatibility complex (MHC) region contains many genes that are key regulators of both innate and adaptive immunity including the polymorphic MHCI and MHCII genes. Consequently, the characterisation of the repertoire of MHC genes is critical to understanding the variation that determines the nature of immune responses. Our current knowledge of the bovine MHCI repertoire is limited with only the Holstein-Friesian breed having been studied in any depth. Traditional methods of MHCI genotyping are of low resolution and laborious and this has been a major impediment to a more comprehensive analysis of the MHCI repertoire of other cattle breeds. Next-generation sequencing (NGS) technologies have been used to enable high throughput and much higher resolution MHCI typing in a number of species. In this study we have developed a MiSeq platform approach and requisite bioinformatics pipeline to facilitate typing of bovine MHCI repertoires. The method was validated initially on a cohort of Holstein-Friesian animals and then demonstrated to enable characterisation of MHCI repertoires in African cattle breeds, for which there was limited or no available data. During the course of these studies we identified >140 novel classical MHCI genes and defined 62 novel MHCI haplotypes, dramatically expanding the known bovine MHCI repertoire

    Population genomics reveals that an anthropophilic population of Aedes aegypti\textit{Aedes aegypti} mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector

    Get PDF
    BACKGROUND\textbf{BACKGROUND}: The mosquito Aedes aegypti\textit{Aedes aegypti} is the main vector of dengue, Zika, chikungunya and yellow fever viruses. This major disease vector is thought to have arisen when the African subspecies Ae. aegypti\textit{Ae. aegypti} formosus evolved from being zoophilic and living in forest habitats into a form that specialises on humans and resides near human population centres. The resulting domestic subspecies, Ae. aegypti aegypti\textit{Ae. aegypti aegypti}, is found throughout the tropics and largely blood-feeds on humans. RESULTS\textbf{RESULTS}: To understand this transition, we have sequenced the exomes of mosquitoes collected from five populations from around the world. We found that Ae. aegypti\textit{Ae. aegypti} specimens from an urban population in Senegal in West Africa were more closely related to populations in Mexico and Sri Lanka than they were to a nearby forest population. We estimate that the populations in Senegal and Mexico split just a few hundred years ago, and we found no evidence of Ae. aegypti aegypti\textit{Ae. aegypti aegypti} mosquitoes migrating back to Africa from elsewhere in the tropics. The out-of-Africa migration was accompanied by a dramatic reduction in effective population size, resulting in a loss of genetic diversity and rare genetic variants. CONCLUSIONS\textbf{CONCLUSIONS}: We conclude that a domestic population of Ae. aegypti\textit{Ae. aegypti} in Senegal and domestic populations on other continents are more closely related to each other than to other African populations. This suggests that an ancestral population of Ae. aegypti \textit{Ae. aegypti }evolved to become a human specialist in Africa, giving rise to the subspecies Ae. aegypti aegypti\textit{Ae. aegypti aegypti}. The descendants of this population are still found in West Africa today, and the rest of the world was colonised when mosquitoes from this population migrated out of Africa. This is the first report of an African population of Ae. aegypti aegypti mosquitoes that is closely related to Asian and American populations. As the two subspecies differ in their ability to vector disease, their existence side by side in West Africa may have important implications for disease transmission.This work was funded by European Research Council grant Drosophila Infection 281668 to FMJ, a KAUST AEA award to FMJ and AP, a Medical Research Council Centenary Award to WJP and a National Institutes of Health Ruth L. Kirschstein National Research Service Award to JC

    Nature’s nations: the shared conservation history of Canada and the USA

    Get PDF
    Historians often study the history of conservation within the confines of national borders, concentrating on the bureaucratic and political manifestations of policy within individual governments. Even studies of the popular expression of conservationist ideas are generally limited to the national or sub-national (province, state, etc.) scale. This paper suggests that conservationist discourse, policy and practice in Canada and the USA were the products of a significant cross-border movement of ideas and initiatives derived from common European sources. In addition, the historical development of common approaches to conservation in North America suggests, contrary to common assumptions, that Canada did not always lag behind the USA in terms of policy innovation. The basic tenets of conservation (i.e. state control over resource, class-based disdain for subsistence hunters and utilitarian approaches to resource management) have instead developed at similar time periods and along parallel ideological paths in Canada and the USA

    The influence of invasive jellyfish blooms on the aquatic microbiome in a coastal lagoon (Varano, SE Italy) detected by an Illumina-based deep sequencing strategy

    Get PDF
    corecore