103 research outputs found
The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer
The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer
APCcdh1 Mediates Degradation of the Oncogenic Rho-GEF Ect2 after Mitosis
Background: Besides regulation of actin cytoskeleton-dependent functions, Rho GTPase pathways are essential to cell cycle progression and cell division. Rho, Rac and Cdc42 regulate G1 to S phase progression and are involved in cytokinesis. RhoA GDP/GTP cycling is required for normal cytokinesis and recent reports have shown that the exchange factor Ect2 and the GTPase activating protein MgcRacGAP regulate RhoA activity during mitosis. We previously showed that the transcription factors E2F1 and CUX1 regulate expression of MgcRacGAP and Ect2 as cells enter S-phase. Methodology/Principal Findings: We now report that Ect2 is subject to proteasomal degradation after mitosis, following ubiquitination by the APC/C complex and its co-activator Cdh1. A proper nuclear localization of Ect2 is necessary for its degradation. APC-Cdh1 assembles K11-linked poly-ubiquitin chains on Ect2, depending upon a stretch of,25 amino acid residues that contain a bi-partite NLS, a conventional D-box and two TEK-like boxes. Site-directed mutagenesis of target sequences generated stabilized Ect2 proteins. Furthermore, such degradation-resistant mutants of Ect2 were found to activate RhoA and subsequent signalling pathways and are able to transform NIH3T3 cells. Conclusions/Significance: Our results identify Ect2 as a bona fide cell cycle-regulated protein and suggest that its ubiquitination-dependent degradation may play an important role in RhoA regulation at the time of mitosis. Our findings raise the possibility that the overexpression of Ect2 that has been reported in some human tumors might result not only from deregulated transcription, but also from impaired degradation
Identification and Functional Analysis of Epigenetically Silenced MicroRNAs in Colorectal Cancer Cells
Abnormal microRNA (miRNA) expression has been linked to the development and progression of several human cancers, and such dysregulation can result from aberrant DNA methylation. While a small number of miRNAs is known to be regulated by DNA methylation, we postulated that such epigenetic regulation is more prevalent. By combining MBD-isolated Genome Sequencing (MiGS) to evaluate genome-wide DNA methylation patterns and microarray analysis to determine miRNA expression levels, we systematically searched for candidate miRNAs regulated by DNA methylation in colorectal cancer cell lines. We found 64 miRNAs to be robustly methylated in HCT116 cells; eighteen of them were located in imprinting regions or already reported to be regulated by DNA methylation. For the remaining 46 miRNAs, expression levels of 18 were consistent with their DNA methylation status. Finally, 8 miRNAs were up-regulated by 5-aza-2′-deoxycytidine treatment and identified to be novel miRNAs regulated by DNA methylation. Moreover, we demonstrated the functional relevance of these epigenetically silenced miRNAs by ectopically expressing select candidates, which resulted in inhibition of growth and migration of cancer cells. In addition to reporting these findings, our study also provides a reliable, systematic strategy to identify DNA methylation-regulated miRNAs by combining DNA methylation profiles and expression data
Rho GTPase function in flies: insights from a developmental and organismal perspective.
Morphogenesis is a key event in the development of a multicellular organism and is reliant on coordinated transcriptional and signal transduction events. To establish the segmented body plan that underlies much of metazoan development, individual cells and groups of cells must respond to exogenous signals with complex movements and shape changes. One class of proteins that plays a pivotal role in the interpretation of extracellular cues into cellular behavior is the Rho family of small GTPases. These molecular switches are essential components of a growing number of signaling pathways, many of which regulate actin cytoskeletal remodeling. Much of our understanding of Rho biology has come from work done in cell culture. More recently, the fruit fly Drosophila melanogaster has emerged as an excellent genetic system for the study of these proteins in a developmental and organismal context. Studies in flies have greatly enhanced our understanding of pathways involving Rho GTPases and their roles in development
Modulation of host cell processes by T3SS effectors
Two of the enteric Escherichia coli pathotypes-enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC)-have a conserved type 3 secretion system which is essential for virulence. The T3SS is used to translocate between 25 and 50 bacterial proteins directly into the host cytosol where they manipulate a variety of host cell processes to establish a successful infection. In this chapter, we discuss effectors from EPEC/EHEC in the context of the host proteins and processes that they target-the actin cytoskeleton, small guanosine triphosphatases and innate immune signalling pathways that regulate inflammation and cell death. Many of these translocated proteins have been extensively characterised, which has helped obtain insights into the mechanisms of pathogenesis of these bacteria and also understand the host pathways they target in more detail. With increasing knowledge of the positive and negative regulation of host signalling pathways by different effectors, a future challenge is to investigate how the specific effector repertoire of each strain cooperates over the course of an infection
Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry
OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc).
METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers.
RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group.
CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies
Moments of the Position of the Maximum for GUE Characteristic Polynomials and for Log-Correlated Gaussian Processes
We study three instances of log-correlated processes on the interval: the
logarithm of the Gaussian unitary ensemble (GUE) characteristic polynomial, the
Gaussian log-correlated potential in presence of edge charges, and the
Fractional Brownian motion with Hurst index (fBM0). In previous
collaborations we obtained the probability distribution function (PDF) of the
value of the global minimum (equivalently maximum) for the first two processes,
using the {\it freezing-duality conjecture} (FDC). Here we study the PDF of the
position of the maximum through its moments. Using replica, this requires
calculating moments of the density of eigenvalues in the -Jacobi
ensemble. Using Jack polynomials we obtain an exact and explicit expression for
both positive and negative integer moments for arbitrary and
positive integer in terms of sums over partitions. For positive moments,
this expression agrees with a very recent independent derivation by Mezzadri
and Reynolds. We check our results against a contour integral formula derived
recently by Borodin and Gorin (presented in the Appendix A from these authors).
The duality necessary for the FDC to work is proved, and on our expressions,
found to correspond to exchange of partitions with their dual. Performing the
limit and to negative Dyson index , we obtain the
moments of and give explicit expressions for the lowest ones. Numerical
checks for the GUE polynomials, performed independently by N. Simm, indicate
encouraging agreement. Some results are also obtained for moments in Laguerre,
Hermite-Gaussian, as well as circular and related ensembles. The correlations
of the position and the value of the field at the minimum are also analyzed.Comment: 64 page, 5 figures, with Appendix A written by Alexei Borodin and
Vadim Gorin; The appendix H in the ArXiv version is absent in the published
versio
Rho-Regulatory Proteins in Breast Cancer Cell Motility and Invasion
The importance of the Rho-GTPases in cancer progression, particularly in the area of metastasis, is becoming increasingly evident. This review will provide an overview of the role of the Rho-regulatory proteins in breast cancer metastatis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44220/1/10549_2004_Article_5264599.pd
- …