2,212 research outputs found
On the gravitational field of static and stationary axial symmetric bodies with multi-polar structure
We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo
solution of the Einstein Equations in terms of bars. We find that each
multi-pole correspond to the Newtonian potential of a bar with linear density
proportional to a Legendre Polynomial. We use this fact to find an integral
representation of the function. These integral representations are
used in the context of the inverse scattering method to find solutions
associated to one or more rotating bodies each one with their own multi-polar
structure.Comment: To be published in Classical and Quantum Gravit
CPT and Other Symmetries in String/M Theory
We initiate a search for non-perturbative consistency conditions in M theory.
Some non-perturbative conditions are already known in Type I theories; we
review these and search for others. We focus principally on possible anomalies
in discrete symmetries. It is generally believed that discrete symmetries in
string theories are gauge symmetries, so anomalies would provide evidence for
inconsistencies. Using the orbifold cosmic string construction, we give some
evidence that the symmetries we study are gauged. We then search for anomalies
in discrete symmetries in a variety of models, both with and without
supersymmetry. In symmetric orbifold models we extend previous searches, and
show in a variety of examples that all anomalies may be canceled by a
Green-Schwarz mechanism. We explore some asymmetric orbifold constructions and
again find that all anomalies may be canceled this way. Then we turn to Type
IIB orientifold models where it is known that even perturbative anomalies are
non-universal. In the examples we study, by combining geometric discrete
symmetries with continuous gauge symmetries, one may define non-anomalous
discrete symmetries already in perturbation theory; in other cases, the
anomalies are universal. Finally, we turn to the question of CPT conservation
in string/M theory. It is well known that CPT is conserved in all string
perturbation expansions; here in a number of examples for which a
non-perturbative formulation is available we provide evidence that it is
conserved exactly.Comment: 52 pages.1 paragraph added in introduction to clarify assumption
Experimental impacts into Teflon targets and LDEF thermal blankets
The Long Duration Exposure Facility (LDEF) exposed approximately 20 sq m of identical thermal protective blankets, predominantly on the Ultra-Heavy Cosmic Ray Experiment (UHCRE). Approximately 700 penetration holes greater than 300 micron in diameter were individually documented, while thousands of smaller penetrations and craters occurred in these blankets. As a result of their 5.7 year exposure and because they pointed into a variety of different directions relative to the orbital motion of the nonspinning LDEF platform, these blankets can reveal important dynamic aspects of the hypervelocity particle environment in near-earth orbit. The blankets were composed of an outer teflon layer (approximately 125 micron thick), followed by a vapor-deposited rear mirror of silver (less than 1000 A thick) that was backed with an organic binder and a thermal protective paint (approximately 50 to 75 micron thick), resulting in a cumulative thickness (T) of approximately 175 to 200 microns for the entire blanket. Many penetrations resulted in highly variable delaminations of the teflon/metal or metal/organic binder interfaces that manifest themselves as 'dark' halos or rings, because of subsequent oxidation of the exposed silver mirror. The variety of these dark albedo features is bewildering, ranging from totally absent, to broad halos, to sharp single or multiple rings. Over the past year experiments were conducted over a wide range of velocities (i.e., 1 to 7 km/s) to address velocity dependent aspects of cratering and penetrations of teflon targets. In addition, experiments were performed with real LDEF thermal blankets to duplicate the LDEF delaminations and to investigate a possible relationship of initial impact conditions on the wide variety of dark halo and ring features
Stabilization of single-electron pumps by high magnetic fields
We study the effect of perpendicular magnetic fields on a single-electron
system with a strongly time-dependent electrostatic potential. Continuous
improvements to the current quantization in these electron pumps are revealed
by high-resolution measurements. Simulations show that the sensitivity of
tunnel rates to the barrier potential is enhanced, stabilizing particular
charge states. Nonadiabatic excitations are also suppressed due to a reduced
sensitivity of the Fock-Darwin states to electrostatic potential. The
combination of these effects leads to significantly more accurate current
quantization
On the ground-state properties of antiferromagnetic half-integer spin chains with long-range interactions
The Lieb-Shultz-Mattis theorem is extended to Heisenberg chains with
long-range interactions. We prove that the half-integer spin chain has no gap,
if it possesses unique ground state and the exchange decays faster than the
inverse-square of distance between spins. The results can be extended to a wide
class of one-dimensional models.Comment: 3 pages, RevTeX
Correlation functions of eigenvalues of multi-matrix models, and the limit of a time dependent matrix
We consider the correlation functions of eigenvalues of a unidimensional
chain of large random hermitian matrices. An asymptotic expression of the
orthogonal polynomials allows to find new results for the correlations of
eigenvalues of different matrices of the chain. Eventually, we consider the
limit of the infinite chain of matrices, which can be interpreted as a time
dependent one-matrix model, and give the correlation functions of eigenvalues
at different times.Comment: Tex-Harvmac, 27 pages, submitted to Journ. Phys.
Stress transmission in granular matter
The transmission of forces through a disordered granular system is studied by
means of a geometrical-topological approach that reduces the granular packing
into a set of layers. This layered structure constitutes the skeleton through
which the force chains set up. Given the granular packing, and the region where
the force is applied, such a skeleton is uniquely defined. Within this
framework, we write an equation for the transmission of the vertical forces
that can be solved recursively layer by layer. We find that a special class of
analytical solutions for this equation are L\'evi-stable distributions. We
discuss the link between criticality and fragility and we show how the
disordered packing naturally induces the formation of force-chains and arches.
We point out that critical regimes, with power law distributions, are
associated with the roughness of the topological layers. Whereas, fragility is
associated with local changes in the force network induced by local granular
rearrangements or by changes in the applied force. The results are compared
with recent experimental observations in particulate matter and with computer
simulations.Comment: 14 pages, Latex, 5 EPS figure
Ultra-High Energy Neutrino Fluxes: New Constraints and Implications
We apply new upper limits on neutrino fluxes and the diffuse extragalactic
component of the GeV gamma-ray flux to various scenarios for ultra high energy
cosmic rays and neutrinos. As a result we find that extra-galactic top-down
sources can not contribute significantly to the observed flux of highest energy
cosmic rays. The Z-burst mechanism where ultra-high energy neutrinos produce
cosmic rays via interactions with relic neutrinos is practically ruled out if
cosmological limits on neutrino mass and clustering apply.Comment: 10 revtex pages, 9 postscript figure
- …