151 research outputs found

    S7A:6 Baseline serum levels of baff or april are independent predictors of sledai response after 12 months of treatment with belimumab in patients with refractory systemic lupus erythematosus

    Get PDF
    Background Belimumab, a monoclonal antibody targeting BlyS (B lymphocyte stimulator), is used in refractory Systemic Lupus Erythematosus (SLE). Pivotal clinical trials showed that SLE patients with positive anti-dsDNA antibodies and reduced levels of C3 and/or C4 fractions were those more likely to be responders to treatment. Our study aims at exploring predictors of response to Belimumab in the post-marketing experience in consecutive SLE patients treated at a single centre. Methods Twenty-one patients received Belimumab intravenously at standard regimen (10 mg/kg at 0–15–30 days and then every 4 weeks). Anti-dsDNA were tested by Farr assay and C3/C4 levels by nephelometry. Biomarkers belonging to the TNF superfamily and related to B cell activity (BAFF, APRIL, sBCMA, sCD40L, sTACI, TWEAK) were tested by ELISA. All laboratory parameters were tested at baseline and every 6 months afterwards. SLE disease activity was assessed by SLEDAI-2K score. General linear modelling and correlation analysis were performed using SPSS. Results Enrolled patients were 2 males and 19 females with a median (25th-75th percentile) age of 38 (31–42) years. The disease duration at time of Belimumab start was 12 (8–19) years. The baseline SLEDAI score was 6 (4–9), the anti-dsDNA level was 26 (11–99) UI/ml, and their C3 and C4 level was 72 (56–86) and 9 (7–15) mg/dL, respectively. All the parameters of the TNF superfamily showed moderate/strong correlation (r values ranging from 0.543 and 0.989, p In contrast, C3, C4, anti-dsDNA, and SLEDAI were less likely to predict relative SLEDAI change at 12 month of Belimumab treatment (uncontrolled model: C3 p=0.410; C4 p=0.778; anti-dsDNA p=0.412) in this cohort of patients preselected for the treatment with Belimumab. Conclusions In this preselected 'real-life' cohort of refractory SLE patients fulfilling the requirements for Belimumab treatment baseline serum levels of BAFF or APRIL are independent predictors of response to treatment. Therefore, BAFF and APRIL could be useful for response estimation in patients qualifying for Belimumab treatment

    Characterization of the non-functional Fas ligand of gld mice

    Get PDF
    Mice homozygous for either the gld or lpr mutation develop autoimmune diseases and progressive lymphadenopathy. The lpr mutation is characterized by the absence of functional Fas, whereas gld mice exhibit an inactive FasL due to a point mutation proximal to the extracellular C-terminus. The structural repercussions of this amino acid substitution remain unknown. Here we report that FasL is expressed at similar levels on the surface of activated T lymphocytes from gld and wild-type mice. Using a polyclonal anti-FasL antibody, indistinguishable amounts of a 40 kDa protein are detected in both gld and wild-type splenocytes. The molecular model of FasL, based on the known structure of TNF-alpha, predicts that the Phe --> Leu gld mutation is located at the protomer interface which is close to the FasR interaction site. We conclude that the gld mutation allows normal FasL biosynthesis, surface expression and oligomerization, but induces structural alterations to the Fas binding region leading to the phenotypic changes observed

    Expression of FAP-1 by human colon adenocarcinoma: implication for resistance against Fas-mediated apoptosis in cancer

    Get PDF
    Although colon carcinoma cells express Fas receptors, they are resistant to Fas-mediated apoptosis. Defects within the intracellular Fas signal transduction may be responsible. We investigated whether the Fas-associated phosphatase-1 (FAP-1), an inhibitor of Fas signal transduction, contributed to this resistance in colon carcinomas. In vivo, apoptosis of cancer cells was detected in situ using terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling ( TUNEL). FAP-1, FasR, and Fas ligand (FasL) were detected using immunohistochemistry. In vitro, colon carcinoma cells were primarily cultured, and their sensitivity to Fas-mediated apoptosis was evaluated by treatment with agonistic anti-FasR CH11 IgM monoclonal antibody in the presence or absence of synthetic Ac-SLV (serine-leucine-valine) tripeptide. Fas-associated phosphatase-1 expression was detected in 20 out of 28 colon adenocarcinomas. In vivo, a positive correlation between the percentage of apoptotic tumour cells and the number of FasL-positive tumour infiltrating lymphocytes was observed in FAP-1 negative cancers, but not in FAP-1-positive ones. Primarily cultured colon cancer cells, which were refractory to CH-11-induced apoptosis, had higher expression of FAP-1 on protein and mRNA levels than the sensitive group. Resistance to Fas-mediated apoptosis in tumour cells could be abolished by Ac-SLV tripetides. Fas-associated phosphatase-1 expression protects colon cancer cells from Fas-mediated apoptosis, and blockade of FAP-1 and FasR interaction sensitises tumour cells to Fas-dependent apoptosis

    HIV-1 Nef Employs Two Distinct Mechanisms to Modulate Lck Subcellular Localization and TCR Induced Actin Remodeling

    Get PDF
    The Nef protein acts as critical factor during HIV pathogenesis by increasing HIV replication in vivo via the modulation of host cell vesicle transport and signal transduction processes. Recent studies suggested that Nef alters formation and function of immunological synapses (IS), thereby modulating exogenous T-cell receptor (TCR) stimulation to balance between partial T cell activation required for HIV-1 spread and prevention of activation induced cell death. Alterations of IS function by Nef include interference with cell spreading and actin polymerization upon TCR engagement, a pronounced intracellular accumulation of the Src kinase Lck and its reduced IS recruitment. Here we use a combination of Nef mutagenesis and pharmacological inhibition to analyze the relative contribution of these effects to Nef mediated alterations of IS organization and function on TCR stimulatory surfaces. Inhibition of actin polymerization and IS recruitment of Lck were governed by identical Nef determinants and correlated well with Nef's association with Pak2 kinase activity. In contrast, Nef mediated Lck endosomal accumulation was separable from these effects, occurred independently of Pak2, required integrity of the microtubule rather than the actin filament system and thus represents a distinct Nef activity. Finally, reduction of TCR signal transmission by Nef was linked to altered actin remodeling and Lck IS recruitment but did not require endosomal Lck rerouting. Thus, Nef affects IS function via multiple independent mechanisms to optimize virus replication in the infected host

    Resistance of MLL–AFF1-positive acute lymphoblastic leukemia to tumor necrosis factor-alpha is mediated by S100A6 upregulation

    Get PDF
    Mixed-lineage leukemia (MLL)–AFF1 (MLL–AF4)-positive acute lymphoblastic leukemia (ALL) is associated with poor prognosis, even after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The resistance to graft-versus-leukemia (GVL) effects may be responsible for the poor effect of allo-HSCT on MLL–AFF1-positive ALL. Cytotoxic effector mechanisms mediated by tumor necrosis factor-alpha (TNF-α) was reported to contribute to the GVL effect. We showed that MLL–AFF1-positive ALL cell lines are resistant to TNF-α. To examine the mechanism of resistance to TNF-α of MLL–AFF1-positive leukemia, we focused on S100A6 as a possible factor. Upregulation of S100A6 expression and inhibition of the p53–caspase 8–caspase 3 pathway were observed only in MLL–AFF1-positive ALL cell lines in the presence of TNF-α. The effect of S100A6 on resistance to TNF-α by inhibition of the p53–caspase 8–caspase 3 pathway of MLL–AFF1-positive ALL cell lines were also confirmed by analysis using small interfering RNA against S100A6. This pathway was also confirmed in previously established MLL–AFF1 transgenic mice. These results suggest that MLL–AFF1-positive ALL escapes from TNF-α-mediated apoptosis by upregulation of S100A6 expression, followed by interfering with p53–caspase 8–caspase 3 pathway. These results suggest that S100A6 may be a promising therapeutic target for MLL–AFF1-positive ALL in combination with allo-HSCT

    An Experimental and Computational Study of Effects of Microtubule Stabilization on T-Cell Polarity

    Get PDF
    T-killer cells eliminate infected and cancerous cells with precision by positioning their centrosome near the interface (immunological synapse) with the target cell. The mechanism of centrosome positioning has remained controversial, in particular the role of microtubule dynamics in it. We re-examined the issue in the experimental model of Jurkat cells presented with a T cell receptor-binding artificial substrate, which permits controlled stimulation and reproducible measurements. Neither 1-µM taxol nor 100-nM nocodazole inhibited the centrosome positioning at the “synapse” with the biomimetic substrate. At the same time, in micromolar taxol but not in nanomolar nocodazole the centrosome adopted a distinct peripheral rather than the normally central position within the synapse. This effect was reproduced in a computational energy-minimization model that assumed no microtubule dynamics, but only a taxol-induced increase in the length of the microtubules. Together, the experimental and computational results indicate that microtubule dynamics are not essential for the centrosome positioning, but that the fit of the microtubule array in the deformed body of the conjugated T cell is a major factor. The possibility of modulating the T-cell centrosome position with well-studied drugs and of predicting their effects in silico appears attractive for designing anti-cancer and antiviral therapies

    An early history of T cell-mediated cytotoxicity.

    Get PDF
    After 60 years of intense fundamental research into T cell-mediated cytotoxicity, we have gained a detailed knowledge of the cells involved, specific recognition mechanisms and post-recognition perforin-granzyme-based and FAS-based molecular mechanisms. What could not be anticipated at the outset was how discovery of the mechanisms regulating the activation and function of cytotoxic T cells would lead to new developments in cancer immunotherapy. Given the profound recent interest in therapeutic manipulation of cytotoxic T cell responses, it is an opportune time to look back on the early history of the field. This Timeline describes how the early findings occurred and eventually led to current therapeutic applications

    Correlations Between Gene Expression and Mercury Levels in Blood of Boys With and Without Autism

    Get PDF
    Gene expression in blood was correlated with mercury levels in blood of 2- to 5-year-old boys with autism (AU) compared to age-matched typically developing (TD) control boys. This was done to address the possibility that the two groups might metabolize toxicants, such as mercury, differently. RNA was isolated from blood and gene expression assessed on whole genome Affymetrix Human U133 expression microarrays. Mercury levels were measured using an inductively coupled plasma mass spectrometer. Analysis of covariance (ANCOVA) was performed and partial correlations between gene expression and mercury levels were calculated, after correcting for age and batch effects. To reduce false positives, only genes shared by the ANCOVA models were analyzed. Of the 26 genes that correlated with mercury levels in both AU and TD boys, 11 were significantly different between the groups (P(Diagnosis*Mercury) ≤ 0.05). The expression of a large number of genes (n = 316) correlated with mercury levels in TD but not in AU boys (P ≤ 0.05), the most represented biological functions being cell death and cell morphology. Expression of 189 genes correlated with mercury levels in AU but not in TD boys (P ≤ 0.05), the most represented biological functions being cell morphology, amino acid metabolism, and antigen presentation. These data and those in our companion study on correlation of gene expression and lead levels show that AU and TD children display different correlations between transcript levels and low levels of mercury and lead. These findings might suggest different genetic transcriptional programs associated with mercury in AU compared to TD children
    corecore