1,484 research outputs found

    FUSE Observations of the Dwarf Nova SW UMa During Quiescence

    Full text link
    We present spectroscopic observations of the short-period cataclysmic variable SW Ursa Majoris, obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite while the system was in quiescence. The data include the resonance lines of O VI at 1031.91 and 1037.61 A. These lines are present in emission, and they exhibit both narrow (~ 150 km/s) and broad (~ 2000 km/s) components. The narrow O VI emission lines exhibit unusual double-peaked and redshifted profiles. We attribute the source of this emission to a cooling flow onto the surface of the white dwarf primary. The broad O VI emission most likely originates in a thin, photoionized surface layer on the accretion disk. We searched for emission from H_2 at 1050 and 1100 A, motivated by the expectation that the bulk of the quiescent accretion disk is in the form of cool, molecular gas. If H_2 is present, then our limits on the fluxes of the H_2 lines are consistent with the presence of a surface layer of atomic H that shields the interior of the disk. These results may indicate that accretion operates primarily in the surface layers of the disk in SW UMa. We also investigate the far-UV continuum of SW UMa and place an upper limit of 15,000 K on the effective temperature of the white dwarf.Comment: 21 Pages, 3 figures, to be published in Ap

    Modeling Ultraviolet Wind Line Variability in Massive Hot Stars

    Full text link
    We model the detailed time-evolution of Discrete Absorption Components (DACs) observed in P Cygni profiles of the Si IV lam1400 resonance doublet lines of the fast-rotating supergiant HD 64760 (B0.5 Ib). We adopt the common assumption that the DACs are caused by Co-rotating Interaction Regions (CIRs) in the stellar wind. We perform 3D radiative transfer calculations with hydrodynamic models of the stellar wind that incorporate these large-scale density- and velocity-structures. We develop the 3D transfer code Wind3D to investigate the physical properties of CIRs with detailed fits to the DAC shape and morphology. The CIRs are caused by irregularities on the stellar surface that change the radiative force in the stellar wind. In our hydrodynamic model we approximate these irregularities by circular symmetric spots on the stellar surface. We use the Zeus3D code to model the stellar wind and the CIRs, limited to the equatorial plane. We constrain the properties of large-scale wind structures with detailed fits to DACs observed in HD 64760. A model with two spots of unequal brightness and size on opposite sides of the equator, with opening angles of 20 +/- 5 degr and 30 +/- 5 degr diameter, and that are 20 +/- 5 % and 8 +/- 5 % brighter than the stellar surface, respectively, provides the best fit to the observed DACs. The recurrence time of the DACs compared to the estimated rotational period corresponds to spot velocities that are 5 times slower than the rotational velocity. The mass-loss rate of the structured wind model for HD 64760 does not exceed the rate of the spherically symmetric smooth wind model by more than 1 %. The fact that DACs are observed in a large number of hot stars constrains the clumping that can be present in their winds, as substantial amounts of clumping would tend to destroy the CIRs.Comment: 58 pages, 16 figures, 1 animation. Accepted for publication in The Astrophysical Journal, Main Journal. More information and animations are available at http://alobel.freeshell.org/hotstars.htm

    The role of antibiotics in the treatment of chronic prostatitis: A consensus statement

    Get PDF
    Practical guidelines for the diagnosis and treatment of chronic prostatitis are presented. Chronic prostatitis is classified as chronic bacterial prostatitis (culture-positive) and chronic inflammatory prostatitis (culture-negative). If chronic bacterial prostatitis is suspected, based on relevant symptoms or recurrent UTIs, underlying urological conditions should be excluded by the following tests: rectal examination, midstream urine culture and residual urine. The diagnosis should be confirmed by the Meares and Stamey technique. Antibiotic therapy is recommended for acute exacerbations of chronic prostatitis, chronic bacterial prostatitis and chronic inflammatory prostatitis, if there is clinical, bacteriological or supporting immunological evidence of prostate infection. Unless a patient presents with fever, antibiotic treatment should not be initiated immediately except in cases of acute prostatitis or acute episodes in a patient with chronic bacterial prostatitis. The work-up, with the appropriate investigations should be done first, within a reasonable time period which, preferably, should not be longer than 1 week. During this period, nonspecific treatment, such as appropriate analgesia to relieve symptoms, should be given. The minimum duration of antibiotic treatment should be 2-4 weeks. If there is no improvement in symptoms, treatment should be stopped and reconsidered. However, if there is improvement, it should be continued for at least a further 2-4 weeks to achieve clinical cure and, hopefully, eradication of the causative pathogen. Antibiotic treatment should not be given for 6-8 weeks without an appraisal of its effectiveness. Currently used antibiotics are reviewed. Of these, the fluoroquinolones ofloxacin and ciprofloxacin are recommended because of their favourable antibacterial spectrum and pharmacokinetic profile. A number of clinical trials are recommended and a standard study design is proposed to help resolve some outstanding issues

    Imaging the dynamical atmosphere of the red supergiant Betelgeuse in the CO first overtone lines with VLTI/AMBER

    Full text link
    We present the first 1-D aperture synthesis imaging of the red supergiant Betelgeuse in the individual CO first overtone lines with VLTI/AMBER. The reconstructed 1-D projection images reveal that the star appears differently in the blue wing, line center, and red wing of the individual CO lines. The 1-D projection images in the blue wing and line center show a pronounced, asymmetrically extended component up to ~1.3 stellar radii, while those in the red wing do not show such a component. The observed 1-D projection images in the lines can be reasonably explained by a model in which the CO gas within a region more than half as large as the stellar size is moving slightly outward with 0--5 km s^-1, while the gas in the remaining region is infalling fast with 20--30 km s^-1. A comparison between the CO line AMBER data taken in 2008 and 2009 shows a significant time variation in the dynamics of the CO line-forming region in the photosphere and the outer atmosphere. In contrast to the line data, the reconstructed 1-D projection images in the continuum show only a slight deviation from a uniform disk or limb-darkened disk. We derive a uniform-disk diameter of 42.05 +/- 0.05 mas and a power-law-type limb-darkened disk diameter of 42.49 +/- 0.06 mas and a limb-darkening parameter of (9.7 +/- 0.5) x 10^{-2}. This latter angular diameter leads to an effective temperature of 3690 +/- 54 K for the continuum-forming layer. These diameters confirm that the near-IR size of Betelgeuse was nearly constant over the last 18 years, in marked contrast to the recently reported noticeable decrease in the mid-IR size. The continuum data taken in 2008 and 2009 reveal no or only marginal time variations, much smaller than the maximum variation predicted by the current 3-D convection simulations.Comment: 21 pages, 12 figures, accepted for publication in Astronomy and Astrophysic

    Tunable Depletion Potentials Driven By Shape Variation Of Surfactant Micelles

    Get PDF
    Depletion interaction potentials between micron-sized colloidal particles are induced by nanometer-scale surfactant micelles composed of hexaethylene glycol monododecyl ether (C12E6), and they are measured by video microscopy. The strength and range of the depletion interaction is revealed to arise from variations in shape anisotropy of the surfactant micelles. This shape anisotropy increases with increasing sample temperature. By fitting the colloidal interaction potentials to theoretical models, we extract micelle length and shape anisotropy as a function of temperature. This work introduces shape anisotropy tuning as a means to control interparticle interactions in colloidal suspensions, and it shows how the interparticle depletion potentials of micron-scale objects can be employed to probe the shape and size of surrounding macromolecules at the nanoscale

    Pulsational instability of yellow hypergiants

    Full text link
    Instability of population I (X=0.7, Y=0.02) massive stars against radial oscillations during the post-main sequence gravitational contraction of the helium core is investigated. Initial stellar masses are in the range from 65M_\odot to 90M_\odot. In hydrodynamic computations of self-exciting stellar oscillations we assumed that energy transfer in the envelope of the pulsating star is due to radiative heat conduction and convection. The convective heat transfer was treated in the framework of the theory of time-dependent turbulent convection. During evolutionary expansion of outer layers after hydrogen exhaustion in the stellar core the star is shown to be unstable against radial oscillations while its effective temperature is Teff > 6700K for Mzams=65M_\odot and Teff > 7200K for mzams=90M_\odot. Pulsational instability is due to the \kappa-mechanism in helium ionization zones and at lower effective temperature oscillations decay because of significantly increasing convection. The upper limit of the period of radial pulsations on this stage of evolution does not exceed 200 day. Radial oscillations of the hypergiant resume during evolutionary contraction of outer layers when the effective temperature is Teff > 7300K for Mzams=65M_\odot and Teff > 7600K for Mzams=90M_\odot. Initially radial oscillations are due to instability of the first overtone and transition to fundamental mode pulsations takes place at higher effective temperatures (Teff > 7700K for Mzams=65M_\odot and Teff > 8200K for Mzams=90M_\odot). The upper limit of the period of radial oscillations of evolving blueward yellow hypergiants does not exceed 130 day. Thus, yellow hypergiants are stable against radial stellar pulsations during the major part of their evolutionary stage.Comment: 20 pages, 7 gigures. Accepted for publication in Astronomy Letter

    Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

    Get PDF
    Context : We still do not know which mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this issue. Aims: Our aim is to probe the radial dependance of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts. Methods: We first extract the rotational splittings and frequencies of the modes for six young Kepler red giants. We then perform a seismic modeling of these stars using the evolutionary codes CESAM2k and ASTEC. By using the observed splittings and the rotational kernels of the optimal models, we perform inversions of the internal rotation profiles of the six stars. Results: We obtain estimates of the mean rotation rate in the core and in the convective envelope of these stars. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, contrary to the RGB stars whose core has been shown to spin down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand. These results will bring observational constraints to the scenarios of angular momentum transport in stars.Comment: Accepted in A&A, 27 pages, 18 figure

    A Far-Ultraviolet Spectroscopic Survey of Luminous Cool Stars

    Full text link
    FUSE ultraviolet spectra of 8 giant and supergiant stars reveal that high temperature (3 X 10^5 K) atmospheres are common in luminous cool stars and extend across the color-magnitude diagram from Alpha Car (F0 II) to the cool giant Alpha Tau (K5 III). Emission present in these spectra includes chromospheric H-Lyman Beta, Fe II, C I, and transition region lines of C III, O VI, Si III, Si IV. Emission lines of Fe XVIII and Fe XIX signaling temperatures of ~10^7 K and coronal material are found in the most active stars, Beta Cet and 31 Com. A short-term flux variation, perhaps a flare, was detected in Beta Cet during our observation. Stellar surface fluxes of the emission of C III and O VI are correlated and decrease rapidly towards the cooler stars, reminiscent of the decay of magnetically-heated atmospheres. Profiles of the C III (977A) lines suggest that mass outflow is underway at T~80,000 K, and the winds are warm. Indications of outflow at higher temperatures (3 X 10^5K) are revealed by O VI asymmetries and the line widths themselves. High temperature species are absent in the M-supergiant Alpha Ori. Narrow fluorescent lines of Fe II appear in the spectra of many giants and supergiants, apparently pumped by H Lyman Alpha, and formed in extended atmospheres. Instrumental characteristics that affect cool star spectra are discussed.Comment: Accept for publication in The Astrophysical Journal; 22 pages of text, 23 figures and 8 table

    Near and mid-IR sub-arcsecond structure of the dusty symbiotic star R Aqr

    Get PDF
    The results of a high-resolution interferometric campaign targeting the symbiotic long-period variable (LPV) R~Aqr are reported. With both near-infrared measurements on baselines out to 10m and mid-infrared data extending to 32m, we have been able to measure the characteristic sizes of regions from the photosphere of the LPV and its extended molecular atmosphere, out to the cooler circumstellar dust shell. The near-infrared data were taken using aperture masking interferometry on the Keck-I telescope and show R~Aqr to be partially resolved for wavelengths out to 2.2 microns but with a marked enlargement, possibly due to molecular opacity, at 3.1 microns. Mid-infrared interferometric measurements were obtained with the U.C. Berkeley Infrared Spatial Interferometer (ISI) operating at 11.15 microns from 1992 to 1999. Although this dataset is somewhat heterogeneous with incomplete coverage of the Fourier plane and sampling of the pulsation cycle, clear changes in the mid-infrared brightness distribution were observed, both as a function of position angle on the sky and as a function of pulsation phase. Spherically symmetric radiative transfer calculations of uniform-outflow dust shell models produce brightness distributions and spectra which partially explain the data, however limitations to this approximation are noted. Evidence for significant deviation from circular symmetry was found in the mid-infrared and more tentatively at 3.08 microns in the near-infrared, however no clear detection of binarity or of non-LPV elements in the symbiotic system is reported.Comment: Accepted to Astrophysical Journal. To appear in volume 534. 14 pages; 3 postscript figure
    • …
    corecore