421 research outputs found
Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis.
Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea by evading innate immunity. Colonizing the mucosa of the reproductive tract depends on the bacterial outer membrane porin, PorB, which is essential for ion and nutrient uptake. PorB is also targeted to host mitochondria and regulates apoptosis pathways to promote infections. How PorB traffics from the outer membrane of N. gonorrhoeae to mitochondria and whether it modulates innate immune cells, such as macrophages, remains unclear. Here, we show that N. gonorrhoeae secretes PorB via outer membrane vesicles (OMVs). Purified OMVs contained primarily outer membrane proteins including oligomeric PorB. The porin was targeted to mitochondria of macrophages after exposure to purified OMVs and wild type N. gonorrhoeae. This was associated with loss of mitochondrial membrane potential, release of cytochrome c, activation of apoptotic caspases and cell death in a time-dependent manner. Consistent with this, OMV-induced macrophage death was prevented with the pan-caspase inhibitor, Q-VD-PH. This shows that N. gonorrhoeae utilizes OMVs to target PorB to mitochondria and to induce apoptosis in macrophages, thus affecting innate immunity
Investigating spillover of multidrug-resistant tuberculosis from a prison: a spatial and molecular epidemiological analysis
Background Congregate settings may serve as institutional amplifiers of tuberculosis (TB) and multidrug-resistant tuberculosis (MDR-TB). We analyze spatial, epidemiological, and pathogen genetic data prospectively collected from neighborhoods surrounding a prison in Lima, Peru, where inmates experience a high risk of MDR-TB, to investigate the risk of spillover into the surrounding community. Methods Using hierarchical Bayesian statistical modeling, we address three questions regarding the MDR-TB risk: (i) Does the excess risk observed among prisoners also extend outside the prison? (ii) If so, what is the magnitude, shape, and spatial range of this spillover effect? (iii) Is there evidence of additional transmission across the region? Results The region of spillover risk extends for 5.47 km outside of the prison (95% credible interval: 1.38, 9.63 km). Within this spillover region, we find that nine of the 467 non-inmate patients (35 with MDR-TB) have MDR-TB strains that are genetic matches to strains collected from current inmates with MDR-TB, compared to seven out of 1080 patients (89 with MDR-TB) outside the spillover region (p values: 0.022 and 0.008). We also identify eight spatially aggregated genetic clusters of MDR-TB, four within the spillover region, consistent with local transmission among individuals living close to the prison. Conclusions We demonstrate a clear prison spillover effect in this population, which suggests that interventions in the prison may have benefits that extend to the surrounding community
Shear wave splitting across the Iceland hot spot: Results from the ICEMELT experiment
We report on observations of upper mantle anisotropy from the splitting of teleseismic shear waves (SKS, SKKS, and PKS) recorded by the ICEMELT broadband seismometer network in Iceland. In a ridge-centered hot spot locale, mantle anisotropy may be generated by flow-induced lattice-preferred orientation of olivine grains or the anisotropic distribution of magma. Splitting measurements of teleseismic shear waves may thus provide diagnostic information on upper mantle flow and/or the distribution of retained melt associated with the Iceland mantle plume. In eastern Iceland, fast polarization directions lie between N10°W and N45°W and average N24°W; delay times between the fast and slow shear waves are generally 0.7–1.35 s. In western Iceland, in contrast, the fast polarization directions, while less well constrained, yield an average value of N23°E and delay times are smaller (0.2–0.95 s). We propose that splitting in eastern Iceland is caused by a 100- to 200-km-thick anisotropic layer in the upper mantle. The observed fast directions in eastern Iceland, however, do not correspond either to the plate spreading direction or to a pattern of radial mantle flow from the center of the Iceland hot spot. We suggest that the relatively uniform direction and magnitude of splitting in eastern Iceland, situated on the Eurasian plate, may therefore reflect the large-scale flow field of the North Atlantic upper mantle. We hypothesize that the different pattern of anisotropy beneath western Iceland, part of the North American plate, is due to the different absolute motions of the two plates. By this view, splitting in eastern and western Iceland is the consequence of shear by North American and Eurasian plate motion relative to the background mantle flow. From absolute plate motion models, in which the Eurasian plate is approximately stationary and the North American plate is moving approximately westward, the splitting observations in both eastern and western Iceland can be satisfied by a background upper mantle flow in the direction N34°W and a velocity of 3 cm/yr in a hot spot reference frame. This inference can be used to test mantle flow models. In particular, it is inconsistent with kinematic flow models, which predict southward flow, or models where flow is dominated by subduction-related sources of mantle buoyancy, which predict westward flow. Our observations are more compatible with the flow field predicted from global seismic tomography models, which in particular include the influence of the large-scale lower mantle upwelling beneath southern Africa. While the hypothesized association between our observations and this upwelling is presently speculative, it makes a very specific and testable prediction about the flow field and hence anisotropy beneath the rest of the Atlantic basin.This work was supported by the National Science Foundation under grants EAR-9316137, OCE-9402991, and EAR-9707193.Peer Reviewe
Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone
Fibroblast cell lines were developed from skin biopsies of eight species of wild-trapped rodents, one species of bat, and a group of genetically heterogeneous laboratory mice. Each cell line was tested in vitro for their resistance to six varieties of lethal stress, as well as for resistance to the nonlethal metabolic effects of the mitochondrial inhibitor rotenone and of culture at very low glucose levels. Standard linear regression of species-specific lifespan against each species mean stress resistance showed that longevity was associated with resistance to death induced by cadmium and hydrogen peroxide, as well as with resistance to rotenone inhibition. A multilevel regression method supported these associations, and suggested a similar association for resistance to heat stress. Regressions for resistance to cadmium, peroxide, heat, and rotenone remained significant after various statistical adjustments for body weight. In contrast, cells from longer-lived species did not show significantly greater resistance to ultraviolet light, paraquat, or the DNA alkylating agent methylmethanesulfonate. There was a strong correlation between species longevity and resistance to the metabolic effects of low-glucose medium among the rodent cell lines, but this test did not distinguish mice and rats from the much longer-lived little brown bat. These results are consistent with the idea that evolution of long-lived species may require development of cellular resistance to several forms of lethal injury, and provide justification for evaluation of similar properties in a much wider range of mammals and bird species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73523/1/j.1474-9726.2006.00255.x.pd
Phenotypic covariance of longevity, immunity and stress resistance in the Caenorhabditis nematodes
Background \ud
Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin– like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four \ud
Caenorhabditis species. \ud
\ud
Methodology/Principal Findings \ud
We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged \ud
significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. \ud
\ud
Conclusions \ud
The gonochoristic species display a significantly longer lifespan (p < 0.0001)and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants
Phenotypic covariance of Longevity, Immunity and Stress Resistance in the Caenorhabditis Nematodes
Background: Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin–like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four Caenorhabditis species. \ud
\ud
Methodology/Principal Findings: We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. \ud
\ud
Conclusions: The gonochoristic species display a significantly longer lifespan (p<0.0001) and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants
A Methodology for Detecting Field Potentials from the External Ear Canal: NEER and EVestG
An algorithm called the neural event extraction routine (NEER) and a method called Electrovestibulography (EVestG) for extracting field potentials (FPs) from artefact rich and noisy ear canal recordings is presented. Averaged FP waveforms can be used to aid detection of acoustic and or vestibular pathologies. FPs were recorded in the external ear canal proximal to the ear drum. These FPs were extracted using an algorithm called NEER. NEER utilises a modified complex Morlet wavelet analysis of phase change across multiple scales and a template matching (matched filter) methodology to detect FPs buried in noise and biological and environmental artefacts. Initial simulation with simulated FPs shows NEER detects FPs down to −30 dB SNR (power) but only 13–23% of those at SNR’s <−6 dB. This was deemed applicable to longer duration recordings wherein averaging could be applied as many FPs are present. NEER was applied to detect both spontaneous and whole body tilt evoked FPs. By subtracting the averaged tilt FP response from the averaged spontaneous FP response it is believed this difference is more representative of the vestibular response. Significant difference (p < 0.05) between up and down whole body (supine and sitting) movements was achieved. Pathologic and physiologic evidence in support of a vestibular and acoustic origin is also presented
- …