14 research outputs found

    Transcriptional Regulation of Ribosome Components Are Determined by Stress According to Cellular Compartments in Arabidopsis thaliana

    Get PDF
    Plants have to coordinate eukaryotic ribosomes (cytoribosomes) and prokaryotic ribosomes (plastoribosomes and mitoribosomes) production to balance cellular protein synthesis in response to environmental variations. We identified 429 genes encoding potential ribosomal proteins (RP) in Arabidopsis thaliana. Because cytoribosome proteins are encoded by small nuclear gene families, plastid RP by nuclear and plastid genes and mitochondrial RP by nuclear and mitochondrial genes, several transcriptional pathways were attempted to control ribosome amounts. Examining two independent genomic expression datasets, we found two groups of RP genes showing very different and specific expression patterns in response to environmental stress. The first group represents the nuclear genes coding for plastid RP whereas the second group is composed of a subset of cytoribosome genes coding for RP isoforms. By contrast, the other cytoribosome genes and mitochondrial RP genes show less constraint in their response to stress conditions. The two subsets of cytoribosome genes code for different RP isoforms. During stress, the response of the intensively regulated subset leads to dramatic variation in ribosome diversity. Most of RP genes have same promoter structure with two motifs at conserved positions. The stress-response of the nuclear genes coding plastid RP is related with the absence of an interstitial telomere motif known as telo box in their promoters. We proposed a model for the “ribosome code” that influences the ribosome biogenesis by three main transcriptional pathways. The first pathway controls the basal program of cytoribosome and mitoribosome biogenesis. The second pathway involves a subset of cytoRP genes that are co-regulated under stress condition. The third independent pathway is devoted to the control of plastoribosome biosynthesis by regulating both nuclear and plastid genes

    Ribosomal Protein S11 Genes from Arabidopsis and Soybean

    No full text

    Fast track hip fracture care and mortality – an observational study of 2230 patients

    Get PDF
    Background Hip fracture patients are frail and have a high mortality. We investigated whether the introduction of fast track care reduced the 30-day mortality after hip fractures. Methods Fast track hip fracture care was established at our institution in October 2013. Data from the Norwegian Hip Fracture Register and electronic hospital records were merged for 2230 hip fracture patients operated in our department from January 2012 through December 2015. 1090 of these patients were operated before (conventional treatment group) and 1140 patients were operated after the introduction of fast track care (fast track group). Data were analysed by univariate analysis and binary logistic regression. Results Mortality did not differ significantly between the conventional treatment group and the fast track group at 30 days (7.9% vs. 6.5%), 90 days (13.5% vs. 12.5%) and one year (22.8% vs. 22.8%). Median admission time and time to surgery were significantly shorter in the fast track group than in the conventional treatment group (1.1 h vs. 3.9 h and 23.6 h vs. 25.7 h, both p <  0.0001). The 30-day reoperation rate was significantly lower in the fast track group compared to the conventional treatment group (odds ratio = 0.35 (95% CI: 0.15–0.84), p = 0.019). A composite 30-day outcome (reoperation, surgical site infection and/or death) was significantly less frequent in the fast track group (8.1%) than in the conventional treatment group (10.7%) in unadjusted analysis (p = 0.006), but not after adjusting for age, gender, cognitive impairment and ASA score (odds ratio = 0.85 (95% CI: 0.63–1.16), p = 0.31, 8.0% missing). Reoperations within 1 year, surgical site infections, 30-day readmissions and length of hospital stay did not differ significantly between the conventional treatment group and the fast track group. Conclusions Fast track hip fracture care is safe. However, we observed no statistically significant change in 30-day, 90-day or 1-year mortality after the introduction of fast track hip fracture care. Trial registration The study was registered retrospectively at ClinicalTrials.gov (Protocol Record 284907) 6 December 2016

    Counting stem cells:methodological constraints

    No full text
    The number of stem cells contributing to hematopoiesis has been a matter of debate. Many studies use retroviral tagging of stem cells to measure clonal contribution. Here we argue that methodological factors can impact such clonal analyses. Whereas early studies had low resolution, leading to underestimation, recent methods may result in an overestimation of stem-cell counts. We discuss how restriction enzyme choice, PCR bias, high-throughput sequencing depth and tagging method could affect the conclusions of clonal studies
    corecore