130 research outputs found

    Cellulose filtration of blood from malaria patients for improving <i>ex vivo</i> growth of <i>Plasmodium falciparum</i> parasites

    Get PDF
    BACKGROUND: Establishing in vitro Plasmodium falciparum culture lines from patient parasite isolates can offer deeper understanding of geographic variations of drug sensitivity and mechanisms of malaria pathogenesis and immunity. Cellulose column filtration of blood is an inexpensive, rapid and effective method for the removal of host factors, such as leucocytes and platelets, significantly improving the purification of parasite DNA in a blood sample. METHODS: In this study, the effect of cellulose column filtration of venous blood on the initial in vitro growth of P. falciparum parasite isolates from Tanzanian children admitted to hospital was tested. The parasites were allowed to expand in culture without subcultivation until 5 days after admission or the appearance of dead parasites and parasitaemia was determined daily. To investigate whether the filtration had an effect on clonality, P. falciparum merozoite surface protein 2 genotyping was performed using nested PCR on extracted genomic DNA, and the var gene transcript levels were investigated, using quantitative PCR on extracted RNA, at admission and 4 days of culture. RESULTS: The cellulose-filtered parasites grew to higher parasitaemia faster than non-filtered parasites seemingly due to a higher development ratio of ring stage parasites progressing into the late stages. Cellulose filtration had no apparent effect on clonality or var gene expression; however, evident differences were observed after only 4 days of culture in both the number of clones and transcript levels of var genes compared to the time of admission. CONCLUSIONS: Cellulose column filtration of parasitized blood is a cheap, applicable method for improving cultivation of P. falciparum field isolates for ex vivo based assays; however, when assessing phenotype and genotype of cultured parasites, in general, assumed to represent the in vivo infection, caution is advised. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12936-017-1714-2) contains supplementary material, which is available to authorized users

    Haplotypes of the Endothelial Protein C Receptor (EPCR) Gene are Not Associated with Severe Malaria in Tanzania.

    Get PDF
    Endothelial protein C receptor (EPCR) was recently identified as a key receptor for Plasmodium falciparum erythrocyte membrane protein 1 mediating sequestration of P. falciparum-infected erythrocytes in patients suffering from severe malaria. Soluble EPCR (sEPCR) inhibits binding of P. falciparum to EPCR in vitro and increased levels of sEPCR have been associated with the H3 haplotype of the EPCR encoding PROCR gene. It has been hypothesized that elevated sEPCR levels, possibly linked to the PROCR H3 genetic variant, may confer protection against severe forms of malaria. This study determined the frequencies of PROCR haplotypes H1-4 and plasma levels of sEPCR in a Tanzanian study population to investigate a possible association with severe malaria. Study participants were children under 5 years of age admitted at the Korogwe District Hospital (N = 143), and diagnosed as having severe malaria (N = 52; including cerebral malaria N = 17), uncomplicated malaria (N = 24), or an infection other than malaria (N = 67). In addition, blood samples from 71 children living in nearby villages were included. The SNPs defining the haplotypes of PROCR gene were determined by post-PCR ligation detection reaction-fluorescent microsphere assay. Individuals carrying at least one H3 allele had significantly higher levels of sEPCR than individuals with no H3 alleles (P < 0.001). No difference in the frequency of H3 was found between the non-malaria patients, malaria patients or the village population (P > 0.1). Plasma levels of sEPCR differed between these three groups, with higher sEPCR levels in the village population compared to the hospitalized patients (P < 0.001) and higher levels in malaria patients compared to non-malaria patients (P = 0.001). However, no differences were found in the distribution of H3 (P = 0.2) or levels of sEPCR (P = 0.8) between patients diagnosed with severe and uncomplicated malaria. Frequencies of SNPs determining PROCR haplotypes were in concordance with other African studies. The PROCR H3 allele was associated with higher levels of sEPCR, confirming earlier findings, however, in this Tanzanian population; neither PROCR haplotype nor level of sEPCR was associated with severe malaria, however, larger studies are needed to confirm these findings

    Multiple var2csa-Type PfEMP1 Genes Located at Different Chromosomal Loci Occur in Many Plasmodium falciparum Isolates

    Get PDF
    BACKGROUND:The var2csa gene encodes a Plasmodium falciparum adhesion receptor which binds chondroitin sulfate A (CSA). This var gene is more conserved than other PfEMP1/var genes and is found in all P. falciparum isolates. In isolates 3D7, FCR3/It4 and HB3, var2csa is transcribed from a sub-telomeric position on the left arm of chromosome 12, but it is not known if this location is conserved in all parasites. Genome sequencing indicates that the var2csa gene is duplicated in HB3, but whether this is true in natural populations is uncertain. METHODOLOGY/PRINCIPAL FINDINGS:To assess global variation in the VAR2CSA protein, sequence variation in the DBL2X region of var2csa genes in 54 P.falciparum samples was analyzed. Chromosome mapping of var2csa loci was carried out and a quantitative PCR assay was developed to estimate the number of var2csa genes in P.falciparum isolates from the placenta of pregnant women and from the peripheral circulation of other malaria patients. Sequence analysis, gene mapping and copy number quantitation in P.falciparum isolates indicate that there are at least two loci and that both var2csa-like genes can be transcribed. All VAR2CSA DBL2X domains fall into one of two distinct phylogenetic groups possessing one or the other variant of a large (approximately 26 amino acid) dimorphic motif, but whether either motif variant is linked to a specific locus is not known. CONCLUSIONS/SIGNIFICANCE:Two or more related but distinct var2csa-type PfEMP1/var genes exist in many P. falciparum isolates. One gene is on chromosome 12 but additional var2csa-type genes are on different chromosomes in different isolates. Multiplicity of var2csa genes appears more common in infected placentae than in samples from non-pregnant donors indicating a possible advantage of this genotype in pregnancy associated malaria

    Identification of a major rif transcript common to gametocytes and sporozoites of Plasmodium falciparum

    Get PDF
    Background: The Plasmodium falciparum parasite is transmitted in its sexual gametocyte stage from man to mosquito and as asexual sporozoites from mosquito to man. Developing gametocytes sequester preferentially in the bone marrow, but mature stage gametocytes are released to the bloodstream. Sexual stage parasite surface proteins are of interest as candidate target antigens for transmission blocking vaccines.Methods: In this study, the transcript profiles of rif and var genes, known to encode surface antigens in asexual blood stage parasites, were investigated at different stages of 3D7/NF54 gametocytogenesis and in sporozoites.Results: Gametocytes exhibited a rif transcript profile unlinked to the rif and var transcript profile of the asexual progenitors. At stage V, mature gametocytes produced high levels of a single rif gene, PF13_0006, which also dominated the rif transcript profile of sporozoites. All var genes appeared to be silenced in sporozoites.Conclusions: The most prominent variant surface antigen transcribed in both gametocytes and sporozoites of 3D7/NF54 is a single variant of the RIFIN protein family. This discovery may lead to the identification of the parasites binding ligands responsible for the adhesion during sexual stages and potentially to novel vaccine candidates

    An Upstream Open Reading Frame Controls Translation of var2csa, a Gene Implicated in Placental Malaria

    Get PDF
    Malaria, caused by the parasite Plasmodium falciparum, is responsible for substantial morbidity, mortality and economic losses in tropical regions of the world. Pregnant women are exceptionally vulnerable to severe consequences of the infection, due to the specific adhesion of parasite-infected erythrocytes in the placenta. This adhesion is mediated by a unique variant of PfEMP1, a parasite encoded, hyper-variable antigen placed on the surface of infected cells. This variant, called VAR2CSA, binds to chondroitin sulfate A on syncytiotrophoblasts in the intervillous space of placentas. VAR2CSA appears to only be expressed in the presence of a placenta, suggesting that its expression is actively repressed in men, children or non-pregnant women; however, the mechanism of repression is not understood. Using cultured parasite lines and reporter gene constructs, we show that the gene encoding VAR2CSA contains a small upstream open reading frame that acts to repress translation of the resulting mRNA, revealing a novel form of gene regulation in malaria parasites. The mechanism underlying this translational repression is reversible, allowing high levels of protein translation upon selection, thus potentially enabling parasites to upregulate expression of this variant antigen in the presence of the appropriate host tissue

    Plasma Ang2 and ADAM17 levels are elevated during clinical malaria; Ang2 level correlates with severity and expression of EPCR-binding PfEMP1

    Get PDF
    The pathogenesis of Plasmodium falciparum malaria involves a complex interplay between parasite adhesion and inflammatory response that includes release of cytokines and activation of the endothelium with accompanying release of Angiopoitin 2 (Ang2) to the plasma. A-disintegrin and metalloproteinase 17 (ADAM17) is a protein responsible for releasing cytokines, including Tumor Necrosis Factor α (TNFα), and shedding of adhesion proteins. In this study, we show that plasma levels of ADAM17 are increased in Tanzanian children hospitalized with a malaria infection compared with asymptomatic children but similar to children hospitalized with other infectious diseases. The plasma levels of ADAM17 decreased during recovery after an acute malaria episode. Plasma levels of Ang2 were associated with markers of malaria severity and levels of var transcripts encoding P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) containing Cysteine Rich Inter Domain Region α1 (CIDRα1) domains predicted to bind Endothelial Protein C receptor (EPCR). ADAM17 levels were not associated with expression of var genes encoding different PfEMP1 types when controlling for age. These data are the first to report ADAM17 plasma levels in malaria-exposed individuals, and support the notion that parasite sequestration mediated by EPCR-binding PfEMP1 is associated with endothelial activation and pathology in severe paediatric malaria

    Cloning of the Repertoire of Individual Plasmodium falciparum var Genes Using Transformation Associated Recombination (TAR)

    Get PDF
    One of the major virulence factors of the malaria causing parasite is the Plasmodium falciparum encoded erythrocyte membrane protein 1 (PfEMP1). It is translocated to It the membrane of infected erythrocytes and expressed from approximately 60 var genes in a mutually exclusive manner. Switching of var genes allows the parasite to alter functional and antigenic properties of infected erythrocytes, to escape the immune defense and to establish chronic infections. We have developed an efficient method for isolating VAR genes from telomeric and other genome locations by adapting transformation-associated recombination (TAR) cloning, which can then be analyzed and sequenced. For this purpose, three plasmids each containing a homologous sequence representing the upstream regions of the group A, B, and C var genes and a sequence homologous to the conserved acidic terminal segment (ATS) of var genes were generated. Co-transfection with P. falciparum strain ITG2F6 genomic DNA in yeast cells yielded 200 TAR clones. The relative frequencies of clones from each group were not biased. Clones were screened by PCR, as well as Southern blotting, which revealed clones missed by PCR due to sequence mismatches with the primers. Selected clones were transformed into E. coli and further analyzed by RFLP and end sequencing. Physical analysis of 36 clones revealed 27 distinct types potentially representing 50% of the var gene repertoire. Three clones were selected for sequencing and assembled into single var gene containing contigs. This study demonstrates that it is possible to rapidly obtain the repertoire of var genes from P. falciparum within a single set of cloning experiments. This technique can be applied to individual isolates which will provide a detailed picture of the diversity of var genes in the field. This is a powerful tool to overcome the obstacles with cloning and assembly of multi-gene families by simultaneously cloning each member

    Mapping the Cord Blood Transcriptome of Pregnancies Affected by Early Maternal Anemia to Identify Signatures of Fetal Programming

    Get PDF
    Context Anemia during early pregnancy (EP) is common in developing countries and is associated with adverse health consequences for both mothers and children. Offspring of women with EP anemia often have low birth weight, which increases risk for cardiometabolic diseases, including type 2 diabetes (T2D), later in life. Objective We aimed to elucidate mechanisms underlying developmental programming of adult cardiometabolic disease, including epigenetic and transcriptional alterations potentially detectable in umbilical cord blood (UCB) at time of birth. Methods We leveraged global transcriptome- and accompanying epigenome-wide changes in 48 UCB from newborns of EP anemic Tanzanian mothers and 50 controls to identify differentially expressed genes (DEGs) in UCB exposed to maternal EP anemia. DEGs were assessed for association with neonatal anthropometry and cord insulin levels. These genes were further studied in expression data from human fetal pancreas and adult islets to understand their role in beta-cell development and/or function. Results The expression of 137 genes was altered in UCB of newborns exposed to maternal EP anemia. These putative signatures of fetal programming, which included the birth weight locus LCORL, were potentially mediated by epigenetic changes in 27 genes and associated with neonatal anthropometry. Among the DEGs were P2RX7, PIK3C2B, and NUMBL, which potentially influence beta-cell development. Insulin levels were lower in EP anemia-exposed UCB, supporting the notion of developmental programming of pancreatic beta-cell dysfunction and subsequently increased risk of T2D in offspring of mothers with EP anemia. Conclusions Our data provide proof-of-concept on distinct transcriptional and epigenetic changes detectable in UCB from newborns exposed to maternal EP anemia.Peer reviewe
    • …
    corecore