438 research outputs found
A theory of ferromagnetism in planar heterostructures of (Mn,III)-V semiconductors
A density functional theory of ferromagnetism in heterostructures of compound
semiconductors doped with magnetic impurities is presented. The variable
functions in the density functional theory are the charge and spin densities of
the itinerant carriers and the charge and localized spins of the impurities.
The theory is applied to study the Curie temperature of planar heterostructures
of III-V semiconductors doped with manganese atoms. The mean-field,
virtual-crystal and effective-mass approximations are adopted to calculate the
electronic structure, including the spin-orbit interaction, and the magnetic
susceptibilities, leading to the Curie temperature. By means of these results,
we attempt to understand the observed dependence of the Curie temperature of
planar -doped ferromagnetic structures on variation of their
properties. We predict a large increase of the Curie Temperature by additional
confinement of the holes in a -doped layer of Mn by a quantum well.Comment: 8 pages, 7 figure
Assessing the economic suitability of aeration and the influence of bed heating on constructed wetlands treatment efficiency and life-span
Intensive constructed wetlands including forced aeration and heating were studied to improve treatment efficiency and prevent clogging. The experiments were carried out in a pilot plant (0.4 m2) treating urban wastewater with an organic loading rate of 40-60 gCOD/m2∙d. Continuous and intermittent aeration was performed on 8% of the wetland surface, leading to different dissolved oxygen concentrations within the wetlands (from 0.2 to 5 mgO2/L). Continuous forced aeration increased organic matter (COD) and ammonium nitrogen removal by 56% and 69%, respectively. Improvements in 33 wastewater treatment caused by forced aeration can result into reduction of the surface area. This work demonstrated that for the studied configuration the cost of the power consumption of the continuous aeration was largely covered by the reduction of the wetlands surface. Even if the heating of 8% of the wetland surface at 21°C had no effects on treatment performances, positive results showed that solids accumulation rate within the granular medium, which is closely related to the development of clogging. It has been demonstrated that heating for 10 days per year during 20 year period would delay the equivalent of 1 year of solids accumulation
Co-ordination between Rashba spin-orbital interaction and space charge effect and enhanced spin injection into semiconductors
We consider the effect of the Rashba spin-orbital interaction and space
charge in a ferromagnet-insulator/semiconductor/insulator-ferromagnet junction
where the spin current is severely affected by the doping, band structure and
charge screening in the semiconductor. In diffusion region, if the the
resistance of the tunneling barriers is comparable to the semiconductor
resistance, the magnetoresistance of this junction can be greatly enhanced
under appropriate doping by the co-ordination between the Rashba effect and
screened Coulomb interaction in the nonequilibrium transport processes within
Hartree approximation.Comment: 4 pages, 3 figure
The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review
PMCID: PMC3408383The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/75.
This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited
Coherent spin valve phenomena and electrical spin injection in ferromagnetic/semiconductor/ferromagnetic junctions
Coherent quantum transport in ferromagnetic/ semiconductor/ ferromagnetic
junctions is studied theoretically within the Landauer framework of ballistic
transport. We show that quantum coherence can have unexpected implications for
spin injection and that some intuitive spintronic concepts which are founded in
semi-classical physics no longer apply: A quantum spin-valve (QSV) effect
occurs even in the absence of a net spin polarized current flowing through the
device, unlike in the classical regime. The converse effect also arises, i.e. a
zero spin-valve signal for a non-vanishing spin-current. We introduce new
criteria useful for analyzing quantum and classical spin transport phenomena
and the relationships between them. The effects on QSV behavior of
spin-dependent electron transmission at the interfaces, interface Schottky
barriers, Rashba spin-orbit coupling and temperature, are systematically
investigated. While the signature of the QSV is found to be sensitive to
temperature, interestingly, that of its converse is not. We argue that the QSV
phenomenon can have important implications for the interpretation of
spin-injection in quantum spintronic experiments with spin-valve geometries.Comment: 15 pages including 11 figures. To appear in PR
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
Low potency toxins reveal dense interaction networks in metabolism
Background
The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs.
Results
Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function.
Conclusions
The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved
Controlling electronic events through rational structural design in subphthalocyanine–corrole dyads: synthesis, characterization, and photophysical properties
Porphyrinoids are considered perfect candidates for their incorporation into electron donor–acceptor (D–A) arrays due to their remarkable optoelectronic properties and low reorganization energies. For the first time, a series of subphthalocyanine (SubPc) and corrole (Cor) were covalently connected through a short-range linkage. SubPc axial substitution strategies were employed, which allowed the synthesis of the target molecules in decent yields. In this context, a qualitative synthetic approach was performed to reverse the expected direction of the different electronic events. Consequently, in-depth absorption, fluorescence, and electrochemical assays enabled the study of electronic and photophysical properties. Charge separation was observed in cases of electron-donating Cors, whereas a quantitative energy transfer from the Cor to the SubPc was detected in the case of electron accepting Cors
1,3,4-Oxadiazole-Containing Histone Deacetylase Inhibitors: Anticancer Activities in Cancer Cells
Functional and Evolutionary Integration of a Fungal Gene With a Bacterial Operon
Funding Information: This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Biological and Environmental Research Program under Award Number DE-SC0018409; the National Science Foundation (under grant Nos. DBI-2305612 to K.T.D., DEB-2110403 to C.T.H., and DEB-2110404 to A.R.); and the National Institute of Food and Agriculture, United States Department of Agriculture, Hatch project 7005101. C.T.H. is an H. I. Romnes Faculty Fellow, supported by the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation. Research in the Rokas lab is also supported by the National Institutes of Health/National Institute of Allergy and Infectious Diseases (R01 AI153356), and the Burroughs Welcome Fund. Publisher Copyright: © The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determine the extant distribution of yeast enterobactin producers and cheaters.publishersversionpublishe
- …
