99 research outputs found
Small scale density variations of electrons and charged particles in the vicinity of polar mesosphere summer echoes
International audienceWe present small scale variations of electron number densities and particle charge number densities measured in situ in the presence of polar mesosphere summer echoes. It turns out that the small scale fluctuations of electrons and negatively charged particles show a strong anticorrelation down to the smallest scales observed. Comparing these small scale structures with the simultaneously measured radar signal to noise profile, we find that the radar profile is well described by the power spectral density of both electrons and charged particles at the radar half wavelength (=the Bragg scale). Finally, we consider the shape of the power spectra of the observed plasma fluctuations and find that both charged particles and electrons show spectra that can be explained in terms of either neutral air turbulence acting on the distribution of a low diffusivity tracer or the fossil remnants of a formerly active turbulent region. All these results are consistent with the theoretical ideas by Rapp and Lübken (2003) suggesting that PMSE can be explained by a combination of active and fossil neutral air turbulence acting on the large and heavy charged aerosol particles which are subsequently mirrored in the electron number density distribution that becomes visible to a VHF radar when small scale fluctuations are present
Photocurrent modelling and experimental confirmation for meteoric smoke particle detectors on board atmospheric sounding rockets
Characterising the photoelectron current induced by the Sun's UV radiation is crucial to ensure accurate daylight measurements from particle detectors. This article lays out the methodology used to address this problem in the case of the meteoric smoke particle detectors (MSPDs), developed by the Leibniz Institute of Atmospheric Physics in Kühlungsborn (IAP) and flown on board the PMWEs (Polar Mesosphere Winter Echoes) sounding rockets in April 2018. The methodology focuses on two complementary aspects: modelling and experimental measurements. A detailed model of the MSPD photocurrent was created based on the expected solar UV flux, the atmospheric UV absorption as a function of height by molecular oxygen and ozone, the photoelectric yield of the material coating the MSPD as a function of wavelength, the index of refraction of these materials as a function of wavelength and the angle of incidence of the illumination onto the MSPD. Due to its complex structure, composed of a central electrode shielded by two concentric grids, extensive ray-tracing calculations were conducted to obtain the incidence angles of the illumination on the central electrode, and this was done for various orientations of the MSPD in respect to the Sun. Results of the modelled photocurrent at different heights and for different materials, as well as for different orientations of the detector, are presented. As a pre-flight confirmation, the model was used to reproduce the experimental measurements conducted by Robertson et al. (2014) and agrees within an order of magnitude. An experimental setup for the calibration of the MSPD photocurrent is also presented. The photocurrent induced by the Lyman-alpha line from a deuterium lamp was recorded inside a vacuum chamber using a narrowband filter, while a UV-sensitive photodiode was used to monitor the UV flux. These measurements were compared with the model prediction, and also matched within an order of magnitude. Although precisely modelling the photocurrent is a challenging task, this article quantitatively improved the understanding of the photocurrent on the MSPD and discusses possible strategies to untangle the meteoric smoke particles (MSPs) current from the photocurrent recorded in-flight
Recommended from our members
Radar Observation of Extreme Vertical Drafts in the Polar Summer Mesosphere
The polar summer mesosphere is the Earth's coldest region, allowing the formation of mesospheric ice clouds. These ice clouds produce strong polar mesospheric summer echoes (PMSE) that are used as tracers of mesospheric dynamics. Here, we report the first observations of extreme vertical drafts (+/-50 ms [hoch]-1) in the mesosphere obtained from PMSE, characterized by velocities more than five standard deviations larger than the observed vertical wind variability. Using aperture synthesis radar imaging, the observed PMSE morphology resembles a solitary wave in a varicose mode, narrow along propagation (3–4 km) and elongated (>10 km) transverse to propagation direction, with a relatively large vertical extent (~13 km). These spatial features are similar to previously observed mesospheric bores, but we observe only one crest with much larger vertical extent and higher vertical velocities
Estimate of size distribution of charged MSPs measured in situ in winter during the WADIS-2 sounding rocket campaign
We present results of in situ measurements of mesosphere-lower thermosphere dusty-plasma densities including electrons, positive ions and charged aerosols conducted during the WADIS-2 sounding rocket campaign. The neutral air density was also measured, allowing for robust derivation of turbulence energy dissipation rates. A unique feature of these measurements is that they were done in a true common volume and with high spatial resolution. This allows for a reliable derivation of mean sizes and a size distribution function for the charged meteor smoke particles (MSPs). The mean particle radius derived from Schmidt numbers obtained from electron density fluctuations was similar to 0.56 nm. We assumed a lognormal size distribution of the charged meteor smoke particles and derived the distribution width of 1.66 based on in situ-measured densities of different plasma constituents. We found that layers of enhanced meteor smoke particles' density measured by the particle detector coincide with enhanced Schmidt numbers obtained from the electron and neutral density fluctuations. Thus, we found that large particles with sizes >1 nm were stratified in layers of similar to 1 km thickness and lying some kilometers apart from each other
Chemical constituents of the soft corals Sinularia vanderlandi and Sinularia gravis from the coast of Madagascar
© 2016 The Royal Society of Chemistry. The crude extracts of the Madagascan soft corals Sinularia vanderlandi and Sinularia gravis (Alcyoniidae) showed activity against Plasmodium falciparum which led us to study their chemical constituents. The new cadinane-type sesquiterpenoid vanderlandin (1) has been obtained from S. vanderlandi along with 24-methylenecholesterol (2). Four new compounds, the spatane-type diterpenoid gravilin (3), the monoalkylmonoacylglycerol 4, the dihomoditerpenoid ketone 5, and isodecaryiol (9), along with the three known compounds (+)-(S)-geranyllinalool (6), (-)-(R)-nephthenol (7), and 11,12-epoxysarcophytol A (8) have been isolated from the methanol extract of S. gravis. The structures were elucidated based on extensive spectroscopic methods, in particular various 2D NMR techniques. The structure of isodecaryiol (9) including its absolute configuration could be confirmed by X-ray diffraction
Chemical constituents of the soft corals Sinularia vanderlandi and Sinularia gravis from the coast of Madagascar
© 2016 The Royal Society of Chemistry.The crude extracts of the Madagascan soft corals Sinularia vanderlandi and Sinularia gravis (Alcyoniidae) showed activity against Plasmodium falciparum which led us to study their chemical constituents. The new cadinane-type sesquiterpenoid vanderlandin (1) has been obtained from S. vanderlandi along with 24-methylenecholesterol (2). Four new compounds, the spatane-type diterpenoid gravilin (3), the monoalkylmonoacylglycerol 4, the dihomoditerpenoid ketone 5, and isodecaryiol (9), along with the three known compounds (+)-(S)-geranyllinalool (6), (-)-(R)-nephthenol (7), and 11,12-epoxysarcophytol A (8) have been isolated from the methanol extract of S. gravis. The structures were elucidated based on extensive spectroscopic methods, in particular various 2D NMR techniques. The structure of isodecaryiol (9) including its absolute configuration could be confirmed by X-ray diffraction
Isolation and structure elucidation of natural products of three soft corals and a sponge from the coast of Madagascar
© The Royal Society of Chemistry.We investigated the three soft corals Sarcophyton stellatum, Capnella fungiformis and Lobophytum crassum and the sponge Pseudoceratina arabica, which have been collected at the coast of Madagascar. In addition to previously known marine natural products, S. stellatum provided the new (+)-enantiomer of the cembranoid (1E,3E,11E)-7,8-epoxycembra-1,3,11,15-tetraene (2). Capnella fungiformis afforded three new natural products, ethyl 5-[(1E,5Z)-2,6-dimethylocta-1,5,7-trienyl]furan-3-carboxylate (6), ethyl 5-[(1E,5E)-2,6-dimethylocta-1,5,7-trienyl]furan-3-carboxylate (7) and the diepoxyguaiane sesquiterpene oxyfungiformin (9a). The extracts of all three soft corals exhibited moderate activities against the malarial parasite Plasmodium falciparum. Extracts of the sponge Pseudoceratina arabica proved to be very active against a series of Gram-positive and Gram-negative bacteria
Isolation and structure elucidation of natural products of three soft corals and a sponge from the coast of Madagascar
© The Royal Society of Chemistry.We investigated the three soft corals Sarcophyton stellatum, Capnella fungiformis and Lobophytum crassum and the sponge Pseudoceratina arabica, which have been collected at the coast of Madagascar. In addition to previously known marine natural products, S. stellatum provided the new (+)-enantiomer of the cembranoid (1E,3E,11E)-7,8-epoxycembra-1,3,11,15-tetraene (2). Capnella fungiformis afforded three new natural products, ethyl 5-[(1E,5Z)-2,6-dimethylocta-1,5,7-trienyl]furan-3-carboxylate (6), ethyl 5-[(1E,5E)-2,6-dimethylocta-1,5,7-trienyl]furan-3-carboxylate (7) and the diepoxyguaiane sesquiterpene oxyfungiformin (9a). The extracts of all three soft corals exhibited moderate activities against the malarial parasite Plasmodium falciparum. Extracts of the sponge Pseudoceratina arabica proved to be very active against a series of Gram-positive and Gram-negative bacteria
第117回北海道整形外科外傷研究会 ; 主題 : 人工関節周辺骨折
© The Royal Society of Chemistry.We investigated the three soft corals Sarcophyton stellatum, Capnella fungiformis and Lobophytum crassum and the sponge Pseudoceratina arabica, which have been collected at the coast of Madagascar. In addition to previously known marine natural products, S. stellatum provided the new (+)-enantiomer of the cembranoid (1E,3E,11E)-7,8-epoxycembra-1,3,11,15-tetraene (2). Capnella fungiformis afforded three new natural products, ethyl 5-[(1E,5Z)-2,6-dimethylocta-1,5,7-trienyl]furan-3-carboxylate (6), ethyl 5-[(1E,5E)-2,6-dimethylocta-1,5,7-trienyl]furan-3-carboxylate (7) and the diepoxyguaiane sesquiterpene oxyfungiformin (9a). The extracts of all three soft corals exhibited moderate activities against the malarial parasite Plasmodium falciparum. Extracts of the sponge Pseudoceratina arabica proved to be very active against a series of Gram-positive and Gram-negative bacteria
- …