171 research outputs found

    Characteristics of equine summer eczema with emphasis on differences between Finnhorses and Icelandic horses in a 11-year study

    Get PDF
    Summer eczema, allergic dermatitis of the horse, was studied on 275 affected horses in Finland in 1997–2007. Features of the horses, clinical signs of the disease and owners' opinions of aggravating factors were recorded. Differences, especially, between two of the native Scandinavian horse breeds, the Finnhorse and the Icelandic horse, were evaluated. The study was based on clinical examination and information from the owners. Of the horses, 50% were Finnhorses, 26% Icelandic horses and 24% consisted of different breeds of ponies and other horses. Of the Finnhorses, 76% had summer eczema by the age of 5 years, but in the Icelandic horses born in Finland the average age at onset was 7 years. The vast majority of the horses, 75%, had moderate clinical signs, while 16% showed severe and 9% mild. The severity of clinical signs did not depend on the duration of the disease nor was it related to the age at onset. The only linkage to severity was the breed of the horse or import from Iceland; New Forest ponies and imported Icelandic horses showed severe clinical signs significantly more often than Finnhorses. Of the owners, 38% regarded insects as the only aggravating factor, 24% mentioned several simultaneous factors, including grass fodder and sunlight, while 22% could not specify any. In Finland, a typical horse breed suffering from summer eczema is the Finnhorse and the characteristics of the disease are mainly uniform with the other breeds affected. Equine summer eczema seems to be aggravated by various combinations of environmental factors

    Plasma-wall interaction on the divertor tiles of JET ITER-like wall from the viewpoint of micro/nanoscopic observations

    Get PDF
    Micro/nanoscopic observations on the surface of the divertor tiles used in the first campaign (2011-2012) of the JET tokamak with ITER-like Wall (JET ILW) have been carried out by means of several material analysis techniques. Previous results from the inner divertor were reported for a single poloidal section of the tile numbers 1, 3 and 4, i.e., upper, vertical and horizontal targets, respectively. The formation of the thick stratified mixed-material deposition layer on tiles 1 and 4, and erosion on tile 3 were identified. This study is mostly focused on the outer divertor: tiles 6, 7 and 8. In contrast to the inner tile, remarkable surface modifications have not been observed on the vertical target (tiles 7 and 8) where sputtering erosion and impurity deposition would have been almost balanced. Only a specific part of tile 6 (horizontal target) located near the exhaust channel was covered with a stratified ("geological-like") mixed-material deposition layer which mainly included Be and Ni with the thickness of similar to 2 mu m. Special feature of this mixed layer was that a certain amount of nitrogen (N) was clearly detected in the layer. Since the concentration of N varied with the depth position, it could be depended on the amount of that gas puffed for plasma edge cooling during the JET experimental campaign. In addition to the outer divertor tiles, a very interesting feature of the local erosion and deposition effects is reported in this paper.Peer reviewe

    Simulating the Mammalian Blastocyst - Molecular and Mechanical Interactions Pattern the Embryo

    Get PDF
    Mammalian embryogenesis is a dynamic process involving gene expression and mechanical forces between proliferating cells. The exact nature of these interactions, which determine the lineage patterning of the trophectoderm and endoderm tissues occurring in a highly regulated manner at precise periods during the embryonic development, is an area of debate. We have developed a computational modeling framework for studying this process, by which the combined effects of mechanical and genetic interactions are analyzed within the context of proliferating cells. At a purely mechanical level, we demonstrate that the perpendicular alignment of the animal-vegetal (a-v) and embryonic-abembryonic (eb-ab) axes is a result of minimizing the total elastic conformational energy of the entire collection of cells, which are constrained by the zona pellucida. The coupling of gene expression with the mechanics of cell movement is important for formation of both the trophectoderm and the endoderm. In studying the formation of the trophectoderm, we contrast and compare quantitatively two hypotheses: (1) The position determines gene expression, and (2) the gene expression determines the position. Our model, which couples gene expression with mechanics, suggests that differential adhesion between different cell types is a critical determinant in the robust endoderm formation. In addition to differential adhesion, two different testable hypotheses emerge when considering endoderm formation: (1) A directional force acts on certain cells and moves them into forming the endoderm layer, which separates the blastocoel and the cells of the inner cell mass (ICM). In this case the blastocoel simply acts as a static boundary. (2) The blastocoel dynamically applies pressure upon the cells in contact with it, such that cell segregation in the presence of differential adhesion leads to the endoderm formation. To our knowledge, this is the first attempt to combine cell-based spatial mechanical simulations with genetic networks to explain mammalian embryogenesis. Such a framework provides the means to test hypotheses in a controlled in silico environment

    Generation of the Sotos syndrome deletion in mice

    Get PDF
    Haploinsufficiency of the human 5q35 region spanning the NSD1 gene results in a rare genomic disorder known as Sotos syndrome (Sotos), with patients displaying a variety of clinical features, including pre- and postnatal overgrowth, intellectual disability, and urinary/renal abnormalities. We used chromosome engineering to generate a segmental monosomy, i.e., mice carrying a heterozygous 1.5-Mb deletion of 36 genes on mouse chromosome 13 (4732471D19Rik-B4galt7), syntenic with 5q35.2–q35.3 in humans (Df(13)Ms2Dja(+/−) mice). Surprisingly Df(13)Ms2Dja(+/−) mice were significantly smaller for their gestational age and also showed decreased postnatal growth, in contrast to Sotos patients. Df(13)Ms2Dja(+/−) mice did, however, display deficits in long-term memory retention and dilation of the pelvicalyceal system, which in part may model the learning difficulties and renal abnormalities observed in Sotos patients. Thus, haploinsufficiency of genes within the mouse 4732471D19Rik–B4galt7 deletion interval play important roles in growth, memory retention, and the development of the renal pelvicalyceal system. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00335-012-9416-0) contains supplementary material, which is available to authorized users

    Shared and Distinct Functions of the Transcription Factors IRF4 and IRF8 in Myeloid Cell Development

    Get PDF
    Interferon regulatory factor (IRF) 8 and IRF4 are structurally-related, hematopoietic cell-specific transcription factors that cooperatively regulate the differentiation of dendritic cells and B cells. Whilst in myeloid cells IRF8 is known to modulate growth and differentiation, the role of IRF4 is poorly understood. In this study, we show that IRF4 has activities similar to IRF8 in regulating myeloid cell development. The ectopic expression of IRF4 in myeloid progenitor cells in vitro inhibits cell growth, promotes macrophages, but hinders granulocytic cell differentiation. We also show that IRF4 binds to and activates transcription through the IRF-Ets composite sequence (IECS). Furthermore, we demonstrate that Irf8-/-Irf4-/- mice exhibit a more severe chronic myeloid leukemia (CML)-like disease than Irf8-/- mice, involving a disproportionate expansion of granulocytes at the expense of monocytes/macrophages. Irf4-/- mice, however, display no obvious abnormality in myeloid cell development, presumably because IRF4 is expressed at a much lower level than IRF8 in granulocyte-macrophage progenitors. Our results also suggest that IRF8 and IRF4 have not only common but also specific activities in myeloid cells. Since the expression of both the IRF8 and IRF4 genes is downregulated in CML patients, these results may add to our understanding of CML pathogenesis

    Automatic Extraction of Nuclei Centroids of Mouse Embryonic Cells from Fluorescence Microscopy Images

    Get PDF
    Accurate identification of cell nuclei and their tracking using three dimensional (3D) microscopic images is a demanding task in many biological studies. Manual identification of nuclei centroids from images is an error-prone task, sometimes impossible to accomplish due to low contrast and the presence of noise. Nonetheless, only a few methods are available for 3D bioimaging applications, which sharply contrast with 2D analysis, where many methods already exist. In addition, most methods essentially adopt segmentation for which a reliable solution is still unknown, especially for 3D bio-images having juxtaposed cells. In this work, we propose a new method that can directly extract nuclei centroids from fluorescence microscopy images. This method involves three steps: (i) Pre-processing, (ii) Local enhancement, and (iii) Centroid extraction. The first step includes two variations: first variation (Variant-1) uses the whole 3D pre-processed image, whereas the second one (Variant-2) modifies the preprocessed image to the candidate regions or the candidate hybrid image for further processing. At the second step, a multiscale cube filtering is employed in order to locally enhance the pre-processed image. Centroid extraction in the third step consists of three stages. In Stage-1, we compute a local characteristic ratio at every voxel and extract local maxima regions as candidate centroids using a ratio threshold. Stage-2 processing removes spurious centroids from Stage-1 results by analyzing shapes of intensity profiles from the enhanced image. An iterative procedure based on the nearest neighborhood principle is then proposed to combine if there are fragmented nuclei. Both qualitative and quantitative analyses on a set of 100 images of 3D mouse embryo are performed. Investigations reveal a promising achievement of the technique presented in terms of average sensitivity and precision (i.e., 88.04% and 91.30% for Variant-1; 86.19% and 95.00% for Variant-2), when compared with an existing method (86.06% and 90.11%), originally developed for analyzing C. elegans images

    Wilms Tumor Chromatin Profiles Highlight Stem Cell Properties and a Renal Developmental Network

    Get PDF
    Wilms tumor is the most common pediatric kidney cancer. To identify transcriptional and epigenetic mechanisms that drive this disease, we compared genome-wide chromatin profiles of Wilms tumors, embryonic stem cells (ESCs), and normal kidney. Wilms tumors prominently exhibit large active chromatin domains previously observed in ESCs. In the cancer, these domains frequently correspond to genes that are critical for kidney development and expressed in the renal stem cell compartment. Wilms cells also express “embryonic” chromatin regulators and maintain stem cell-like p16 silencing. Finally, Wilms and ESCs both exhibit “bivalent” chromatin modifications at silent promoters that may be poised for activation. In Wilms tumor, bivalent promoters correlate to genes expressed in specific kidney compartments and point to a kidney-specific differentiation program arrested at an early-progenitor stage. We suggest that Wilms cells share a transcriptional and epigenetic landscape with a normal renal stem cell, which is inherently susceptible to transformation and may represent a cell of origin for this disease

    Evolution and Survival on Eutherian Sex Chromosomes

    Get PDF
    Since the two eutherian sex chromosomes diverged from an ancestral autosomal pair, the X has remained relatively gene-rich, while the Y has lost most of its genes through the accumulation of deleterious mutations in nonrecombining regions. Presently, it is unclear what is distinctive about genes that remain on the Y chromosome, when the sex chromosomes acquired their unique evolutionary rates, and whether X-Y gene divergence paralleled that of paralogs located on autosomes. To tackle these questions, here we juxtaposed the evolution of X and Y homologous genes (gametologs) in eutherian mammals with their autosomal orthologs in marsupial and monotreme mammals. We discovered that genes on the X and Y acquired distinct evolutionary rates immediately following the suppression of recombination between the two sex chromosomes. The Y-linked genes evolved at higher rates, while the X-linked genes maintained the lower evolutionary rates of the ancestral autosomal genes. These distinct rates have been maintained throughout the evolution of X and Y. Specifically, in humans, most X gametologs and, curiously, also most Y gametologs evolved under stronger purifying selection than similarly aged autosomal paralogs. Finally, after evaluating the current experimental data from the literature, we concluded that unique mRNA/protein expression patterns and functions acquired by Y (versus X) gametologs likely contributed to their retention. Our results also suggest that either the boundary between sex chromosome strata 3 and 4 should be shifted or that stratum 3 should be divided into two strata

    Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design

    Get PDF
    A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme
    corecore