447 research outputs found

    A reversible lesion of the corpus callosum splenium with adult influenza-associated encephalitis/encephalopathy: a case report

    Get PDF
    <p>ABstract</p> <p>Introduction</p> <p>Influenza virus-associated encephalitis/encephalopathy is a severe childhood illness with a poor prognosis. Adult case reports are rare and, to date, there have been no reports of adults with a mild subcortical encephalopathy with reversible lesions of the corpus callosum splenium.</p> <p>Case presentation</p> <p>A previously healthy 35-year-old man presented with acute progressive tetraplegia, transcortical motor aphasia and a mild decrease in his consciousness during his recovery after receiving oseltamivir phosphate treatment, and influenza type A antiviral medication. The initial magnetic resonance imaging study at day 1 showed symmetrical diffuse lesions in the white matter and a lesion on the central portion of the corpus callosum splenium. These findings had resolved on follow-up studies at day 8 and day 146. His neurological deficits mostly recovered within 12 hours following methylprednisolone pulse therapy. The levels of interleukin-6 and interleukin-10 in his blood and cerebrospinal fluid were initially elevated, but rapidly decreased to normal levels by day 8.</p> <p>Conclusion</p> <p>It is important for clinicians to recognize that even in adulthood, the subcortical encephalopathy observed during the therapeutic treatment for influenza type A infection can occur in conjunction with a reversible lesion of the corpus callosum, which may recover quickly. In addition, the cytokine storm in the blood system and the corticospinal cavity may play an important role in the etiology of the disease process.</p

    Antimicrobial resistance of H. influenzae

    Get PDF
    Abstract From 1989 to 1995, a total of 391 Haemophilus influenzae isolates were recovered from the cerebrospinal fluid (CSF) of hospitalized patients in São Paulo, Brazil. The majority of strains were isolated from infants aged less than 5 years. Strains belonging to biotype I (64.7%), biotype II (34.5%) and biotype IV (0.76%) were detected. Ninety-nine percent of these strains were serotype b. Minimal inhibitory concentration (MIC) was determined for ampicillin, chloramphenicol and ceftriaxone. The ß-lactamase assay was performed for all strains. The rate of ß-lactamase producer strains ranged from 10 to 21.4% during a period of 7 years, with an overall rate of 13.8%. Of the 391 strains analyzed, none was ß-lactamase negative ampicillin resistant (BLNAR). A total of 9.7% of strains showed resistance to both ampicillin and chloramphenicol; however, 4% of them were resistant to ampicillin only and 2% to chloramphenicol. All strains were susceptible to ceftriaxone and the MIC 90 was 0.007 µg/ml, suggesting that ceftriaxone could be an option for the treatment of bacterial meningitis in pediatric patients who have not been screened for drug sensitivity

    High Distribution of CD40 and TRAF2 in Th40 T Cell Rafts Leads to Preferential Survival of this Auto-Aggressive Population in Autoimmunity

    Get PDF
    CD40-CD154 interactions have proven critical in autoimmunity, with the identification of CD4(lo)CD40(+) T cells (Th40 cells) as harboring an autoaggressive T cell population shedding new insights into those disease processes. Th40 cells are present at contained levels in non-autoimmune individuals but are significantly expanded in autoimmunity. Th40 cells are necessary and sufficient in transferring type 1 diabetes in mouse models. However, little is known about CD40 signaling in T cells and whether there are differences in that signaling and subsequent outcome depending on disease conditions. When CD40 is engaged, CD40 and TNF-receptor associated factors, TRAFs, become associated with lipid raft microdomains. Dysregulation of T cell homeostasis is emerging as a major contributor to autoimmune disease and thwarted apoptosis is key in breaking homeostasis.Cells were sorted into CD4(hi) and CD4(lo) (Th40 cells) then treated and assayed either as whole or fractionated cell lysates. Protein expression was assayed by western blot and Nf-kappaB DNA-binding activity by electrophoretic mobility shifts. We demonstrate here that autoimmune NOD Th40 cells have drastically exaggerated expression of CD40 on a per-cell-basis compared to non-autoimmune BALB/c. Immediately ex-vivo, untreated Th40 cells from NOD mice have high levels of CD40 and TRAF2 associated with the raft microdomain while Th40 cells from NOR and BALB/c mice do not. CD40 engagement of Th40 cells induces Nf-kappaB DNA-binding activity and anti-apoptotic Bcl-X(L) expression in all three mouse strains. However, only in NOD Th40 cells is anti-apoptotic cFLIP(p43) induced which leads to preferential survival and proliferation. Importantly, CD40 engagement rescues NOD Th40 cells from Fas-induced death.CD40 may act as a switch between life and death promoting signals and NOD Th40 cells are poised for survival via this switch. This may explain how they expand in autoimmunity to thwart T cell homeostasis

    Proteome-Wide Analysis of Single-Nucleotide Variations in the N-Glycosylation Sequon of Human Genes

    Get PDF
    N-linked glycosylation is one of the most frequent post-translational modifications of proteins with a profound impact on their biological function. Besides other functions, N-linked glycosylation assists in protein folding, determines protein orientation at the cell surface, or protects proteins from proteases. The N-linked glycans attach to asparagines in the sequence context Asn-X-Ser/Thr, where X is any amino acid except proline. Any variation (e.g. non-synonymous single nucleotide polymorphism or mutation) that abolishes the N-glycosylation sequence motif will lead to the loss of a glycosylation site. On the other hand, variations causing a substitution that creates a new N-glycosylation sequence motif can result in the gain of glycosylation. Although the general importance of glycosylation is well known and acknowledged, the effect of variation on the actual glycoproteome of an organism is still mostly unknown. In this study, we focus on a comprehensive analysis of non-synonymous single nucleotide variations (nsSNV) that lead to either loss or gain of the N-glycosylation motif. We find that 1091 proteins have modified N-glycosylation sequons due to nsSNVs in the genome. Based on analysis of proteins that have a solved 3D structure at the site of variation, we find that 48% of the variations that lead to changes in glycosylation sites occur at the loop and bend regions of the proteins. Pathway and function enrichment analysis show that a significant number of proteins that gained or lost the glycosylation motif are involved in kinase activity, immune response, and blood coagulation. A structure-function analysis of a blood coagulation protein, antithrombin III and a protease, cathepsin D, showcases how a comprehensive study followed by structural analysis can help better understand the functional impact of the nsSNVs

    IgG glycosylation and DNA methylation are interconnected with smoking

    Get PDF
    Background: Glycosylation is one of the most common post-translation modifications with large influences on protein structure and function. The effector function of immunoglobulin G (IgG) alters between pro- and anti-inflammatory, based on its glycosylation. IgG glycan synthesis is highly complex and dynamic. Methods: With the use of two different analytical methods for assessing IgG glycosylation, we aim to elucidate the link between DNA methylation and glycosylation of IgG by means of epigenome-wide association studies. In total, 3000 individuals from 4 cohorts were analyzed. Results: The overlap of the results from the two glycan measurement panels yielded DNA methylation of 7 CpG-sites on 5 genomic locations to be associated with IgG glycosylation: cg25189904 (chr.1, GNG12); cg05951221, cg21566642 and cg01940273 (chr.2, ALPPL2); cg05575921 (chr.5, AHRR); cg06126421 (6p21.33); and cg03636183 (chr.19, F2RL3). Mediation analyses with respect to smoking revealed that the effect of smoking on IgG glycosylation may be at least partially mediated via DNA methylation levels at these 7 CpG-sites. Conclusion: Our results suggest the presence of an indirect link between DNA methylation and IgG glycosylation that may in part capture environmental exposures. General significance: An epigenome-wide analysis conducted in four population-based cohorts revealed an association between DNA methylation and IgG glycosylation patterns. Presumably, DNA methylation mediates the effect of smoking on IgG glycosylation
    corecore