284 research outputs found
The Low-pH Stability Discovered in Neuraminidase of 1918 Pandemic Influenza A Virus Enhances Virus Replication
The “Spanish” pandemic influenza A virus, which killed more than 20 million worldwide in 1918-19, is one of the serious pathogens in recorded history. Characterization of the 1918 pandemic virus reconstructed by reverse genetics showed that PB1, hemagglutinin (HA), and neuraminidase (NA) genes contributed to the viral replication and virulence of the 1918 pandemic influenza virus. However, the function of the NA gene has remained unknown. Here we show that the avian-like low-pH stability of sialidase activity discovered in the 1918 pandemic virus NA contributes to the viral replication efficiency. We found that deletion of Thr at position 435 or deletion of Gly at position 455 in the 1918 pandemic virus NA was related to the low-pH stability of the sialidase activity in the 1918 pandemic virus NA by comparison with the sequences of other human N1 NAs and sialidase activity of chimeric constructs. Both amino acids were located in or near the amino acid resides that were important for stabilization of the native tetramer structure in a low-pH condition like the N2 NAs of pandemic viruses that emerged in 1957 and 1968. Two reverse-genetic viruses were generated from a genetic background of A/WSN/33 (H1N1) that included low-pH-unstable N1 NA from A/USSR/92/77 (H1N1) and its counterpart N1 NA in which sialidase activity was converted to a low-pH-stable property by a deletion and substitutions of two amino acid residues at position 435 and 455 related to the low-pH stability of the sialidase activity in 1918 NA. The mutant virus that included “Spanish Flu”-like low-pH-stable NA showed remarkable replication in comparison with the mutant virus that included low-pH-unstable N1 NA. Our results suggest that the avian-like low-pH stability of sialidase activity in the 1918 pandemic virus NA contributes to the viral replication efficiency
Recovery from Posttraumatic Stress Symptoms: A Qualitative Study of Attributions in Survivors of War
This study was funded by a grant from the European Commission, contract number INCO-CT-2004-50917
Lethal Influenza Virus Infection in Macaques Is Associated with Early Dysregulation of Inflammatory Related Genes
The enormous toll on human life during the 1918–1919 Spanish influenza pandemic is a constant reminder of the potential lethality of influenza viruses. With the declaration by the World Health Organization of a new H1N1 influenza virus pandemic, and with continued human cases of highly pathogenic H5N1 avian influenza virus infection, a better understanding of the host response to highly pathogenic influenza viruses is essential. To this end, we compared pathology and global gene expression profiles in bronchial tissue from macaques infected with either the reconstructed 1918 pandemic virus or the highly pathogenic avian H5N1 virus A/Vietnam/1203/04. Severe pathology was observed in respiratory tissues from 1918 virus-infected animals as early as 12 hours after infection, and pathology steadily increased at later time points. Although tissues from animals infected with A/Vietnam/1203/04 also showed clear signs of pathology early on, less pathology was observed at later time points, and there was evidence of tissue repair. Global transcriptional profiles revealed that specific groups of genes associated with inflammation and cell death were up-regulated in bronchial tissues from animals infected with the 1918 virus but down-regulated in animals infected with A/Vietnam/1203/04. Importantly, the 1918 virus up-regulated key components of the inflammasome, NLRP3 and IL-1β, whereas these genes were down-regulated by A/Vietnam/1203/04 early after infection. TUNEL assays revealed that both viruses elicited an apoptotic response in lungs and bronchi, although the response occurred earlier during 1918 virus infection. Our findings suggest that the severity of disease in 1918 virus-infected macaques is a consequence of the early up-regulation of cell death and inflammatory related genes, in which additive or synergistic effects likely dictate the severity of tissue damage
Toll-like receptor pre-stimulation protects mice against lethal infection with highly pathogenic influenza viruses
<p>Abstract</p> <p>Since the beginning of the 20th century, humans have experienced four influenza pandemics, including the devastating 1918 'Spanish influenza'. Moreover, H5N1 highly pathogenic avian influenza (HPAI) viruses are currently spreading worldwide, although they are not yet efficiently transmitted among humans. While the threat of a global pandemic involving a highly pathogenic influenza virus strain looms large, our mechanisms to address such a catastrophe remain limited. Here, we show that pre-stimulation of Toll-like receptors (TLRs) 2 and 4 increased resistance against influenza viruses known to induce high pathogenicity in animal models. Our data emphasize the complexity of the host response against different influenza viruses, and suggest that TLR agonists might be utilized to protect against lethality associated with highly pathogenic influenza virus infection in humans.</p
Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses
Human influenza viruses derive their genes from avian viruses. The neuraminidase (NA) of the avian viruses has, in addition to the catalytic site, a separate sialic acid binding site (hemadsorption site) that is not present in human viruses. The biological significance of the NA hemadsorption activity in avian influenza viruses remained elusive. A sequence database analysis revealed that the NAs of the majority of human H2N2 viruses isolated during the influenza pandemic of 1957 differ from their putative avian precursor by amino acid substitutions in the hemadsorption site. We found that the NA of a representative pandemic virus A/Singapore/1/57 (H2N2) lacks hemadsorption activity and that a single reversion to the avian-virus-like sequence (N367S) restores hemadsorption. Using this hemadsorption-positive NA, we generated three NA variants with substitutions S370L, N400S and W403R that have been found in the hemadsorption site of human H2N2 viruses. Each substitution abolished hemadsorption activity. Although, there was no correlation between hemadsorption activity of the NA variants and their enzymatic activity with respect to monovalent substrates, all four hemadsorption-negative NAs desialylated macromolecular substrates significantly slower than did the hemadsorption-positive counterpart. The NA of the 1918 pandemic virus A/Brevig Mission/1/18 (H1N1) also differed from avian N1 NAs by reduced hemadsorption activity and less efficient hydrolysis of macromolecular substrates. Our data indicate that the hemadsorption site serves to enhance the catalytic efficiency of NA and they suggest that, in addition to changes in the receptor-binding specificity of the hemagglutinin, alterations of the NA are needed for the emergence of pandemic influenza viruses
ADAM17-Mediated Processing of TNF-α Expressed by Antiviral Effector CD8+ T Cells Is Required for Severe T-Cell-Mediated Lung Injury
Influenza infection in humans evokes a potent CD8+ T-cell response, which is important for clearance of the virus but may also exacerbate pulmonary pathology. We have previously shown in mice that CD8+ T-cell expression of TNF-a is required for severe and lethal lung injury following recognition of an influenza antigen expressed by alveolar epithelial cells. Since TNF-a is first expressed as a transmembrane protein that is then proteolytically processed to release a soluble form, we sought to characterize the role of TNF-a processing in CD8+ T-cell-mediated injury. In this study we observed that inhibition of ADAM17-mediated processing of TNF-a by CD8+ T cells significantly attenuated the diffuse alveolar damage that occurs after T-cell transfer, resulting in enhanced survival. This was due in part to diminished chemokine expression, as TNF-aprocessing was required for lung epithelial cell expression of CXCL2 and the subsequent inflammatory infiltration. We confirmed the importance of CXCL2 expression in acute lung injury by transferring influenza-specific CD8+ T cells into transgenic mice lacking CXCR2. These mice exhibited reduced airway infiltration, attenuated lung injury, and enhanced survival. Theses studies describe a critical role for TNF-a processing by CD8+ T cells in the initiation and severity of acute lung injury, which may have important implications for limiting immunopathology during influenza infection and other human infectious or inflammatory diseases
Work ethics and general work attitudes in adolescents are related to quality of life, sense of coherence and subjective health – a Swedish questionnaire study
BACKGROUND: Working life is an important arena in most people's lives, and the working line concept is important for the development of welfare in a society. For young people, the period before permanent establishment in working life has become longer during the last two decades. Knowledge about attitudes towards work can help us to understand young people's transition to the labour market. Adolescents are the future workforce, so it seems especially important to notice their attitudes towards work, including attitudes towards the welfare system. The aim of this study was to describe and analyse upper secondary school students' work attitudes, and to explore factors related to these attitudes. METHODS: The sample consisted of 606 upper secondary school students. They all received a questionnaire including questions about quality of life (QOL), sense of coherence (SOC), subjective health and attitudes towards work. The response rate was 91%. A factor analysis established two dimensions of work attitudes. Multivariate analyses were carried out by means of logistic regression models. RESULTS: Work ethics (WE) and general work attitudes (GWA) were found to be two separate dimensions of attitudes towards work. Concerning WE the picture was similar regardless of gender or study programme. Males in theoretical programmes appeared to have more unfavourable GWA than others. Multivariate analyses revealed that good QOL, high SOC and good health were significantly related to positive WE, and high SOC was positively related to GWA. Being female was positively connected to WE and GWA, while studying on a practical programme was positively related to GWA only. Among those who received good parental support, GWA seemed more favourable. CONCLUSION: Assuming that attitudes towards work are important to the working line concept, this study points out positive factors of importance for the future welfare of the society. Individual factors such as female gender, good QOL, high SOC and good health as well as support from both parents, positive experience of school and work contacts related positively to attitudes towards work. Further planning and supportive work have to take these factors into account
Aberrant Cell Cycle and Apoptotic Changes Characterise Severe Influenza A Infection – A Meta-Analysis of Genomic Signatures in Circulating Leukocytes
Influenza A infection is a global disease that has been responsible for four pandemics over the last one hundred years. However, it remains poorly understood as to why some infected individuals succumb to life threatening complications whilst others recover and are relatively unaffected. Using gene-expression analysis of circulating leukocytes, here we show that the progression towards severe influenza A infection is characterised by an abnormal transcriptional reprogramming of cell cycle and apoptosis pathways. In severely infected humans, leukocyte gene-expression profiles display opposing cell cycle activities; an increased aberrant DNA replication in the G1/S phase yet delayed progression in the G2/M phase. In mild infection, cell cycle perturbations are fewer and are integrated with an efficient apoptotic program. Importantly, the loss of integration between cell cycle perturbations and apoptosis marks the transition from a mild viral illness to a severe, life threatening infection. Our findings suggest that circulating immune cells may play a significant role in the evolution of the host response. Further study may reveal alternative host response factors previously unrecognized in the current disease model of influenza
- …