153 research outputs found

    Electromagnetically Induced Transparency from a Single Atom in Free Space

    Full text link
    We report an absorption spectroscopy experiment and the observation of electromagnetically induced transparency from a single trapped atom. We focus a weak and narrowband Gaussian light beam onto an optically cooled Barium ion using a high numerical aperture lens. Extinction of this beam is observed with measured values of up to 1.3 %. We demonstrate electromagnetically induced transparency of the ion by tuning a strong control beam over a two-photon resonance in a three-level lambda-type system. The probe beam extinction is inhibited by more than 75 % due to population trapping.Comment: 4 pages, 3 figure

    Long Distance Coupling of a Quantum Mechanical Oscillator to the Internal States of an Atomic Ensemble

    Get PDF
    We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows to couple the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.Comment: 14 pages, 5 figure

    Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system

    Full text link
    Sympathetic cooling with ultracold atoms and atomic ions enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to 9090 times larger than that of the coolant atom. Here we use ultracold atoms to sympathetically cool the vibrations of a Si3_3N4_4 nanomembrane, whose mass exceeds that of the atomic ensemble by a factor of 101010^{10}. The coupling of atomic and membrane vibrations is mediated by laser light over a macroscopic distance and enhanced by placing the membrane in an optical cavity. We observe cooling of the membrane vibrations from room temperature to 650±230650\pm 230 mK, exploiting the large atom-membrane cooperativity of our hybrid optomechanical system. Our scheme enables ground-state cooling and quantum control of low-frequency oscillators such as nanomembranes or levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state.Comment: 11 pages, 4 figure

    Stability of surfaces in the chalcopyrite system

    Get PDF
    It has been observed previously that the stable surfaces in chalcopyrites are the polar 112 surfaces. We present an electron microscopy study of epitaxial films of different compositions. It is shown that for both CuGaSe2 and CuInSe2 the 001 surfaces form 112 facets. With increasing Cu excess the faceting is suppressed, indicating a lower surface energy of the 001 surface than the energy of the 112 surface in the Cu rich regime, but the 001 surface is higher in energy than the 112 surface in the Cu poor regime. As both surfaces are polar the stabilization is attributed to defect formatio

    Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system

    Full text link
    We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal mode splitting of the atom-cavity system is measured via the atomic excitation. Moreover, we observe evidence for conditional dynamics of two atoms simultaneously coupled to the cavity mode. Our results point towards the realization of measurement-induced entanglement schemes for neutral atoms in optical cavities.Comment: 4 pages, 4 figures, published versio

    Single-atom imaging of fermions in a quantum-gas microscope

    Get PDF
    Single-atom-resolved detection in optical lattices using quantum-gas microscopes has enabled a new generation of experiments in the field of quantum simulation. Fluorescence imaging of individual atoms has so far been achieved for bosonic species with optical molasses cooling, whereas detection of fermionic alkaline atoms in optical lattices by this method has proven more challenging. Here we demonstrate single-site- and single-atom-resolved fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas microscope setup using electromagnetically-induced-transparency cooling. We detected on average 1000 fluorescence photons from a single atom within 1.5s, while keeping it close to the vibrational ground state of the optical lattice. Our results will enable the study of strongly correlated fermionic quantum systems in optical lattices with resolution at the single-atom level, and give access to observables such as the local entropy distribution and individual defects in fermionic Mott insulators or anti-ferromagnetically ordered phases.Comment: 7 pages, 5 figures; Nature Physics, published online 13 July 201

    Two-Dimensional 1,3,5-Tris(4-carboxyphenyl)benzene Self-Assembly at the 1-Phenyloctane/Graphite Interface Revisited

    Get PDF
    International audienceTwo-dimensional (2D) self-assembly of star-shaped 1,3,5-tris(4-carboxyphenyl)benzene molecules is investigated. Scanning tunneling microscopy reveals that this molecule can form three hydrogen-bonded networks at the 1-phenyloctane/graphite interface. One of these structures is close-packed and the two other ones are porous structures, with hexagonal and rectangular cavities. The network with rectangular cavities appears to be the most stable structure

    Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

    Full text link
    The control of one light field by another, ultimately at the single photon level, is a challenging task which has numerous interesting applications within nonlinear optics and quantum information science. Due to the extremely weak direct interactions between optical photons in vacuum, this type of control can in practice only be achieved through highly nonlinear interactions within a medium. Electromagnetic induced transparency (EIT) constitutes one such means to obtain the extremely strong nonlinear coupling needed to facilitate interactions between two faint light fields. Here, we demonstrate for the first time EIT as well as all-optical EIT-based light switching using ion Coulomb crystals situated in an optical cavity. Unprecedented narrow cavity EIT feature widths down to a few kHz and a change from essentially full transmission to full absorption of the probe field within a window of only ~100 kHz are achieved. By applying a weak switching field, we furthermore demonstrate nearly perfect switching of the transmission of the probe field. These results represent important milestones for future realizations of quantum information processing devices, such as high-efficiency quantum memories, single-photon transistors and single-photon gates
    corecore