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Abstract
Wepropose and investigate a hybrid optomechanical system consisting of amicro-mechanical
oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the
systems ismediated by a lightfieldwhich allows the coupling of the two systems in amodular way over
long distances. Coupling to internal degrees of freedomof atoms opens up the possibility to employ
high-frequencymechanical resonators in theMHz toGHz regime, such as optomechanical crystal
structures, and to benefit from the rich toolbox of quantum control over internal atomic states.
Previous schemes involving atomicmotional states are rather limited in both of these aspects.We
derive a full quantummodel for the effective coupling including themain sources of decoherence. As
an applicationwe show that sympathetic ground-state cooling and strong coupling between the two
systems is possible.

1. Introduction

In this paper we describe an optical interface which provides a coherent quantummechanical coupling between
a nano-mechanical oscillator and the internal states of an atomic ensemble. Themotivation for considering such
a hybrid quantumdevice should be seen in the context of the effort to build composite quantum systems, where
complementary advantages of the components are combined in a single, experimentally compatible setup. In
recent years various hybrid systems involving nano-mechanical oscillators have been investigated, including
mechanical oscillators coupled to solid-state spin systems [1–5], semiconductor quantumdots [6, 7],
superconducting devices [8, 9], as well as cold atoms [10–13]. In the context of nano-mechanics such hybrid
devices provide novel opportunities for cooling, detection and quantum control of vibrations in engineered
mechanical structures, with applications in precision sensing and fundamental tests of quantumphysics
[14–17]. The nano-mechanics—atomic ensemble hybrid systemdeveloped in the present work takes advantage
of thewell-developed atomic toolbox tomanipulate atomic systemswith lasers [18]. At the same time light as the
mediator of interactions provides the unique opportunity for coupling distant quantum systems, in the present
example a nano-mechanical oscillator in a cryogenic environment and an atomic ensemble in an cold atom
chamber.

Previous work on coupling nano-mechanical oscillators to atoms has focusedmainly on coupling to the
motional degrees of freedomof the atoms, where the atoms act as amicroscopicmechanical oscillator deep in the
quantum regime. In this context, various couplingmechanisms have been proposed [15, 19–21], and recently
first experimental implementations have been reported [10–13]. In particular, substantial sympathetic cooling
of amechanical oscillator by coupling it to the laser-cooledmotion of an ensemble of ultracold atoms has been
observed [13]with an exciting prospect to achieve ground-state cooling [20]. In the quest to establishmore
advanced levels of quantum control in such a hybrid system the coupling to the center-of-massmotion of atoms
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is challenged through two limitations:firstly, the requirement of resonant coupling limits the frequency of the
mechanical oscillator to themaximal trap frequency achievable in optical lattices, that is, to the sub-MHz
regime. Secondly, whilemotional states of individual atoms in optical lattices are under complete control, a
similar level of quantum control over the center-of-massmotion of atomic ensembles has yet to be established.

In the present workwewill consider the coupling of a nano-mechanical oscillator to the internal states of the
atomic ensemble. Coupling to Zeeman or hyperfine ground states with frequencies in theMHz regime opens up
the possibility to use high-frequencymechanical oscillators, such as optomechanical crystal structures [22, 23],
which generically exhibitmuch larger radiation pressure coupling to light. Coupling to internal degrees of
freedomalso benefits from the rich toolbox available for themanipulation, initialization andmeasurement of
the electronic atomic states with laser light.Moreover, internal states of atomic ensembles can realize effective
mechanical oscillators with unusual properties such as negativemass [24] or reduced quantumuncertainty
through spin-squeezing [25]. Alternatively,manipulation and state-selective detection on the level of single
quanta is possible using techniques of Rydberg blockade [26].

Here we show that long-distance coupling of amechanical oscillator to the internal states of an atomic
ensemble is possible.We derive a full quantummechanical theory for a specific experimentally relevant
geometry, including the derivation of the coherent coupling, the discussion of quantumnoise and the complete
dynamics resulting from the quantum stochastic Schrödinger treatment. A quantizedmany-body treatment is
essential as the coupling and dissipation channelsmay bemodified by collective effects that cannot be obtained
in semi-classical or single-particle theories. The dynamics of our coupledmechanical–atomic ensemble system
are exactly solvable, which allows an estimate of a parameter regime for sympathetic cooling and strong
coupling. Considering a photonic crystal ‘zipper cavity’ as the optomechanical device [22, 23], we obtain
significantly faster dynamics and better performance than in previousmotional-state coupling schemes [20].
Relatedwork suggesting long-distance coupling to internal levels has been reported in [27, 28]. Reference [27]
considers a cascaded coupling scheme, where the light propagates in a uni-directional fashion from the
mechanical system to the atomic ensemble, which allows to create entanglement between the systems
conditioned on ameasurement. In contrast, we consider bi-directional, Hamiltonian coupling generated by
light propagating back and forth between the two systems. Reference [28] considers a coupling scheme based on
electromagnetically induced transparency, where the light is resonantly interacting with the atomic ensemble. In
our system, the light is detuned fromatomic resonance, giving rise to an off-resonant two-photon interaction.
Moreover, we develop a fully quantummany body theory that also includes collective effects in the atom–light
interaction as well as in the dissipation channels. The paper is structured as follows: in section 2we present the
full quantummodel of the light-mediated coupling and themain decoherence processes. In section 3we
propose different applications such as sympathetic cooling of themechanical oscillator and strong atom-
oscillator coupling, while experimental parameters are discussed in section 3.5.

2.Model

Weconsider a system as shown infigure 1(a), where amicro-mechanical resonator (left) is coupled via the light
field to the internal states of a distant atomic ensemble. The atomic ensemble is trapped in an external optical
lattice and consists ofN three-level atomswith aΛ-type level scheme as depicted in the inset offigure 1(a), where
the two ground states (∣ 〉g , ∣ 〉s ) are separated by ωat, and the corresponding transitions to the excited state ∣ 〉e are
polarization-dependent. Initially, the dominant population of the atoms is prepared in state ∣ 〉g . At the position
of the atoms the lightfield is, on average σ−-polarized, since it is pumped by a σ−-polarized laser at frequency ωL

from the right with amplitude α. The latter is related to the runningwave power ω α π= ℏP 2L
2 of the laser,

which drives the transition ∣ 〉 ↔ ∣ 〉s e off-resonantly with detuning Δ ω ω= −L es.
In aMichelson interferometer-like setup, a polarizing beamsplitter (PBS) splits the circularly polarized light

into linearly polarized light on armA (πy) andB (πx). In armA, themechanical resonator is taken to be a perfect
mirrorwith effectivemassM and resonance at frequency ωm, such that its zero-point fluctuations are given by

ℓ ω= ℏ M2m m . The second armof theMichelson interferometer-like setup, armB infigure 1(a), is bounded
by a fixedmirror at position x = l and has equal length to armA as long as themechanical resonator is in its
equilibriumposition. This also ensures that the outgoing light has predominantly the same polarization as the
incoming light. Note, while we describe in the following the simpleminded setup of amoving end-mirror as
depicted infigure 1(a), it is straight forward to usemore sophisticated setups like a ‘membrane-in-the-middle’
configuration as displayed infigure 1 (b), or even a fully one-dimensional (1D) setupwithout theMichelson
interferometer, bymaking use of the birefringence of an optical cavity placed around themechanical oscillator.

The coupling of themechanical resonator to the atomsworks via translating the phase shift caused by a
displacement of themechanical resonator into a polarization rotation using the PBS. In case of resonance
ω ω≈at m, the emergent σ+-polarized light on armC at the blue sideband frequency ω ω ω= ++ L m can then
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induce a two-photon transition on the side of the atoms, i.e. ∣ 〉 ↔ ∣ 〉s g . In return, if the atomsmake a transition
between the two ground states, the radiation pressure on themirror changes due to the additional emitted
photons of σ+-polarizationwhich have 50% chance to enter armA.

In the followingwe derive a quantum-mechanical description for the coupling of themechanical resonator
to the internal states of the atomic ensemble.

2.1.Mode functions
We start the quantummechanical treatment by quantizing the fieldmodes for the case where themirror is in its
equilibriumposition, such that the two armsA andB of theMichelson interferometer-like setup have equal
length. There are two sets offieldmodes representing the two possible polarizations incident from the right on
armC.We choose the basis of circular σ±-polarized light with the associated destruction operators being σω −c ( )

and σω +d ( ), that obey the commutation relations δ ω ω= = − ′ω ω ω ω′ ′c c[ , ] [d , d ] ( )† † . The PBS then
decomposes these circularly polarizedmodes into linearly polarized ones on armA (πy) andB (πx).

Taking into account the boundary conditions at bothmirrors, the positive frequency parts of the electric
field are given by

∫ ω= +ω ω ω
+ ( )A z c kzE eon : ( ) d

i

2
d sin( ), (1)y

( )

∫ ω= −ω ω ω
+ ( )B y c kyE eon : ( ) d

1

2
d sin( ), (2)x

( )

= +σ σ
+

+
+

−
+

+ −C z E z E zE e eon : ( ) ( ) ( ), (3)( ) ( ) ( )

∫ ω=σ ω ω
+

−E z c kz( ) d sin( ), (4)( )

∫ ω=σ ω ω
+
+E z kz( ) d d sin( ), (5)( )

where ω=k c,  ω π ϵ= ℏω c 0 . The beam cross-sectional area  is in principle a function of the position
and can therefore be different at the position of the atoms and themechanical oscillator.Wewill use the same
letter  for the two cases as it is clear from the context whatwe refer to. Further, ei with ∈i x y{ , } are the
polarization unit vectors for linear polarized light, and = ∓ ±±e e e( i ) 2x y the associated ones for circular
polarized light.

Figure 1. (a)Micro-mechanicalmirror coupled to the internal states of a distant atomic ensemblemediated by the lightfield (red).
The system is pumped by a σ−-polarized laser at frequency ωL and amplitude α. TheMichelson-interferometer like setupwith the
PBS is needed to translate themotion of themechanical resonator into a polarization rotation at the position of the atoms. In the other
direction, transitions between the groundstates ∣ 〉 ∣ 〉s g( , ) change the radiation pressure on themovablemirror. Inset: atomic level
scheme: ∣ 〉s and ∣ 〉g are separated by ωat. All atoms are initially prepared in ∣ 〉g , while the incoming laser coherently pumps the
∣ 〉 ↔ ∣ 〉s e transitionwith a detuningΔ. (b) Extension of the setup: ‘membrane-in-the-middle’-setup [29], where themechanical
resonator is placed inside a cavity to increase the coupling by itsfinesse  . Similarly, any other optomechanical systemwith a single
sided cavity can be implemented.
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2.2.Hamiltonian
The full system in a 1Dmodel is described by theHamiltonian

= + +− −H H H H , (6)0 m f at f

where −Hm f describes the interaction between the lightfield and themechanical oscillator and −Hat f is the
interaction of the atomic ensemblewith the lightfield.H0 contains the free evolution of themechanics, the
energy of the atomic ground states and thefieldmodes:

∑ω ω σ= ℏ + ℏ +H a a H , (7)
j

j
0 m m

†
m at ss field

where thefieldmodeHamiltonian reads ∫ ω ω= ℏ +ω ω ω ωH c cd ( d d )field
† † . Further, we set the energy of ground

state ∣ 〉g to zero and the splitting of the two ground states is given by ωat, see inset offigure 1(a).
The interaction between themirror and the light-field −Hm f ismodeled by the familiar radiation pressure

Hamiltonian, which can be derived from theMaxwell stress tensor. For reasons of simplicity, here we evaluate
theMaxwell stress tensor for an idealmetallicmirror.However, we note that a physical equivalent interaction
can also be derived for othermechanical systems such as a ‘membrane-in-the-middle’-configuration as depicted
infigure 1(b), cf section 3.1 and [20]. The interactionHamiltonian for the idealmetallicmirror reads


μ

δ=−
− +H zB B(0) (0) , (8)A Am f

0

( ) ( )
m

where the displacement of themirror is δ ℓ= +z a a( )m m m m
† withmechanical annihilation (creation) operator

am
(†). The positive frequency part of themagnetic field on armA is given by

∫ ω=
−

+ω
ω ω

+ ( )z
c

c kzB e( ) d
2

d cos( ). (9)A x
( )

On the side of the atomswe assume a level scheme as shown in the inset offigure 1(a), where each
polarization (σ±) couples to one armof theΛ-transition. Considering theHamiltonian for theΛ-system
interactingwith the lightfield, we first eliminate the excited state ∣ 〉e that is detuned byΔwith respect to the laser.
Here, the condition Ω μα Δ= ℏ ≪ ∣ ∣ωL

enters, where α denotes the laser amplitudewhichwill be introduced

in equation (11). Subsequently, we obtain the effective interaction of the two ground states (∣ 〉g , ∣ 〉s ) with the
lightfield

∑

∑

∑

μ μ
Δ

σ σ

μ
Δ

σ

μ
Δ

σ

=
ℏ

+

+
ℏ

+
ℏ

σ σ σ σ

σ σ

σ σ

−
+ − + − + −

+ + −

− + −

− + + −

+ +

− −

H E z E z E z E z

E z E z

E z E z

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) , (10)

j

j j
j

j j
j

j

j j
j

j

j j
j

at f
( ) ( )

gs
( ) ( )

sg

2
( ) ( )

gg

2
( ) ( )

ss

⎡⎣ ⎤⎦

where μ± are the atomic dipolematrix elements for both transitions, zj is the position of the jth atom, and
σ = ∣ 〉〈 ∣a bab is the atomic transition operator. In equation (10) the first line provides the relevant interaction,
whereas the last two lines denote the ac-Stark shifts for both ground states.

2.3. Linearization around the laser
Wenow introduce the σ−-polarized laser displayed in figure 1(a), whichmediates the coupling between the
mechanical resonator and the atoms. The σ−-polarized lightfield then contains a coherent part plus
fluctuations. To include this, wemove to a displaced picture by applying the following replacement for thefield
modes,

αδ ω ω→ + −ω ω
ω−c c ( )e (11)t

L
i L

with the amplitude α and laser frequency ωL. Assuming α∣ ∣ ≫ 1 allows us to linearize the interactions −Hat f

and −Hm f by only keeping contributions enhanced byα.

2.3.1.Mirror–field interaction
We start with themirror–field interaction in equation (8) by inserting themagnetic field in equation (9), and
apply the above replacement to the associated fieldmode operators. The contribution α∝ 2 is taken care of by
redefining the equilibriumposition of themirror, since it yields only a constant force. The zeroth order inα is
neglected, while the linear order provides the relevant interaction, which is in an interaction picturewith respect
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to (w.r.t.) Hfield

= ℏ + + +−H g c t t c t t X( ) d( ) ( ) d ( ) , (12)m f
lin

m
† †

m
⎡⎣ ⎤⎦

wherewe defined themechanical quadrature as = +X a a( ) 2m m m
† and themirror–light coupling element

for  ≈ω ωL
reads

α ℓ
π

=g
k

. (13)m
L m

Further, we defined thefieldmode operators as

∫ ω
π

=
ω θ

ω θ
ω

ω ω
−

+
− −c t c( )

d

2
e , (14)ti( )

L

L
L

∫ ω
π

=
ω θ

ω θ
ω

ω ω
−

+
− −d t( )

d

2
d e . (15)ti( )

L

L
L

The associated commutation relations are given by

δ′ = ′ = − ′θc t c t t t t t( ), ( ) d( ), d ( ) ( ), (16)† †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
where δθ t( ) is a representation of the δ-function of width θ∝ 1 . Here, we assume that all photonsmediating the
relevant interaction processes have a frequency in a bandwidth θ2 around the laser frequency ωL, such that the
frequency scales satisfy the condition ω ω θ ω≪ ≪,m at L.

2.3.2. Atom–field interaction
In order to linearize the atom–field interaction −Hat f we insert the electric field in equations (4) and (5) into
equation (10) and apply the displacement of the σ−-fieldmode given in equation (11). The classical
contribution that is quadratic inα yields an optical lattice for atoms in the ∣ 〉s -state given by

∑Ω σ= ℏ ( )H k zsin (17)
j

j
j

trap OL
2

L ss

with frequency

Ω
μ

Δ
α=

ℏ ω
− . (18)OL

2

2
2 2

L

Since this optical lattice traps only the ∣ 〉s -state and themajority of population is in the ∣ 〉g -state, an external
optical lattice that traps both states is necessary. In section 2.3.3we specify the conditions for the external optical
lattice.

The relevant contribution linear inα provides uswith the interaction between atoms and lightfield.
Therefore, we first transform into an interaction picture w.r.t. Hfield and approximate  ≈ω ωL

as well as
τ τ≡ = z cj j , the retardation time due to the propagation of light between atoms andmechanical oscillator. The
latter approximationmeans the retardations across the atomic ensemble are neglected in the following.With
this, we canwrite5

∑ τ τ σ= ℏ − − + + − +−
−{ }( ) ( )H g t td ( ) 1 e d ( ) 1 e h.c. , (19)

j

k z k z j
at f
lin

at
† 2i † 2i

gs
j jL L

⎡⎣ ⎤⎦

wherewe used equation (15) and introduced the atom–field coupling

μ μ

Δ
α π=

ℏ ω
+ −

g
8

. (20)at 2
2

L

Interpreting equation (19)we see that every spinflip requires a twophotonprocess of either absorbing a
σ−-polarized laser photon at frequency ωL and emitting a σ+-polarized sidebandphoton at frequency ω ω+L at, or
vice versa. Fromequation (19)we see, that these twoprocesses can either result in forwards scattering or in
backwards scattering and canoccur at different times τ±t as displayed infigure 2.

We are interested in a description of the interaction between the light field and the collective spin excitation
of the atomic ensemble, i.e. a spinwave. In order to obtain such an interaction, we rewrite equation (19) in the
collective atomic excitation states given by

5
Note, that linearizing the last line in equation (10) also yields a contribution linear inα that is not resonant with the interaction. Further,

this contribution couples to the population of the ∣ 〉s -state, which is weak in this case, and therefore we have neglected this contribution in
equation (19).
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∑ ∑σ σ= =±
±S

N
S

N

1 1
e , (21)

j

j

j

j k z
0 gs 1 gs

2i jL

where S0 corresponds to an unmodulated spinwave resulting from forwards scattering of the photon. Backwards
scattering of the photon leads to a space-dependent phase and therefore results inmodulated collective spin
waves ±S 1.

By using equation (21) the atom–fieldHamiltonian reads

τ τ= ℏ − − + + − +− − +( ) ( )H Ng t S S t S Sd ( ) d ( ) h.c. . (22)at f
lin

at
†

0 1
†

0 1
⎡⎣ ⎤⎦

Although the collectivemodes in equation (21) are intuitive as they correspond to forward and backward
scattering, it is sufficient to describe the interactionwith just two spinwaves. Therefore, we introduce the
collective basis

∑

∑

σ

σ

=

= −− { }

( )

( )

S
N

k z

S
N

k z

1
sin 2 ,

1
1 cos 2 . (23)

j

j
j

j

j
j

sin L gs

1 cos L gs

Equation (22) can then be expressed as

τ

τ

τ

τ

= ℏ + + + −

+ + − − −

+ − + − −

+ − − + +

− − −

− −

− −

− −

{ }
{ }
{ }
{ }

( )

( )
( )

( )

H
N

g X t S S S S

P t S S S S

X t S S S S

P t S S S S

2
( ) i

( ) i

( ) i

( ) i , (24)

d

d

d

d

at f
lin

at 1 cos 1 cos
†

sin
†

sin

1 cos
†

1 cos sin sin
†

1 cos 1 cos
†

sin
†

sin

1 cos
†

1 cos sin sin
†

⎡⎣

⎤⎦
wherewe introduced the lightfield quadratures

= +

= −

{ }
{ }

X t t t

P t t t

( ) d( ) d ( ) 2

( ) i d ( ) d( ) 2 . (25)

d

d

†

†

Note, equations (25) represents canonical operators fulfilling the associated commutation relations, i.e.
δ′ = − ′X t P t t t[ ( ), ( )] i ( )d d .

2.3.3. Positioning of the atoms
So far no assumptions on the trapping of the atomic ensembleweremade. In contrast to previous proposals
[20], where the coupling laser also provided the optical lattice that traps the atomic ensemble, herewe have only
a space-dependent Stark shift of the ∣ 〉s -state due to the coupling laser, cf equation (17).

In the following, wewant to simplify the atom–lightfield interaction in equation (24), which couples to the
two spinwaves of the atomic ensemble from equation (23), such that both spinwaves reduce to the same
unmodulated spinwave S0 in equation (21). In order to do so, we introduce an optical lattice that traps both

Figure 2. Interactions between the atomic ensemble and the lightfield are given by Stokes scattering processes, i.e. conversion between
laser photons and sideband photons. Forward scattering processes (left column) are associatedwith the unmodulated spinwave S0 in
equation (21).On the other side, backward scattering processes (right column) result in the twomodulated spinwaves ±S 1 in
equation (21).
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ground states of the atomic ensemble. This can be obtained by choosing an appropriate optical lattice localizing
the atoms at positions zj such that =k zsin(2 ) 1jL . This lattice can be generatedwith an additional laser that does
not take part in the coupling.

Since the Stark shift of the ∣ 〉s -state in equation (17) has the same spatial dependence, it reduces to a constant
shift that can easily be compensated and is equal for all atoms.

By introducing the positioning as above only the unmodulated spinwave S0 is relevant, since both
modulated spinwaves ±S 1 reduce to S0. The quadratures of the unmodulated spinwave are given by

= +

= −

( )
( )

X S S

P S S

2 ,

i 2 . (26)

s

s

,0 0 0
†

,0 0
†

0

Under the conditions that the dominant population of the atoms is occupying the ground state ∣ 〉g and by
applying theHolstein–Primakoff approximation [30], the quadratures in equation (26) fulfil the canonical
commutation relations ≈X P i[ , ]s s,0 ,0 .

2.4. LinearizedHamiltonian
Finally, we can summarize the resulting linearizedHamiltonian that contains both the coupling of the lightfield
to themechanical resonator and the atomic ensemble, respectively. Including the statements of positioning the
atoms in section 2.3.3, the complete linearizedHamiltonian in an interaction picturew.r.t. Hfield is given by

τ τ

τ τ

= + ℏ +

+ ℏ + + + + −

+ − − + − +

{ } { }
{ } { }

H H g X t X t X

Ng X t X P P t P X

X t X P P t P X

2 ( ) ( )

( ) ( )

( ) ( ) , (27)

c d

d s s d s s

d s s d s s

lin 0,lin m m

at ,0 ,0 ,0 ,0

,0 ,0 ,0 ,0

⎡⎣ ⎤⎦
⎡⎣

⎤⎦
where the σ−-polarized lightfield quadrature X t( )c is defined in analogy to equation (25).

TheHamiltonian H0,lin in equation (27) includes the free evolution of themechanical and atomic system as
well as the optical lattice potential induced by the driving laser on the ∣ 〉s -state

∑ω ω
Ω

σ= ℏ + ℏ +H a a
2

. (28)
j

j
0,lin m m

†
m at

OL
ss

⎛
⎝⎜

⎞
⎠⎟

From equation (27)we see that only the σ+-field canmediate the interaction between the two systems. The
σ−-field associated to the driving laser just couples to themechanical oscillator and can therefore notmediate
interactions. However, after eliminating the lightfield the coupling of themechanical oscillator to the σ−-field
will result in amechanical diffusion rate, as wewill show in section 2.6.2.Moreover, spontaneous photon
scattering from the σ−-fieldwill lead to atomic diffusion (in a three-dimensional picture), see also section 2.6.2.

2.5. Phase shift of quantumfield
The interaction part of the linearizedHamiltonian in equation (27) can be rewritten as

τ τ

τ τ

= ℏ + −

+ ℏ − − +

+ + + −

{ }

{ }
{ }

H g X t X t P t X

Ng X t P t X

X t P t P

2 ( )
1

2
( ) ( )

2 ( ) ( )

( ) ( ) , (29)

c d d

d d s

d d s

int
lin

m m

at ,0

,0

⎡
⎣⎢

⎤
⎦⎥

⎡⎣
⎤⎦

wherewe changed the basis for the σ+-polarized quantum lightfield to

= +{ }X t X t P t( ) ( ) ( ) 2 , (30)d d d

= − +{ }P t X t P t( ) ( ) ( ) 2 , (31)d d d

with the commutator δ′ = ′ = − ′X t P t X t P t t t[ ( ), ( )] [ ( ), ( )] i ( )d d d d .
From equation (29)we can derive an effective interaction betweenmechanical resonator and the S0 spin

mode of the atomic ensemble. However, the resultingHamiltonian contains in addition to the coupling between
the ensemble and themechanical resonator an undesirable contribution resulting from the backaction of the
atomic ensemble on itself, cf appendix A. Sincewe are interested in a coherent interaction between ensemble and
mechanical oscillator, we have tomodify the setup slightly in order to remove this backaction term.

In the following, we describe in detail amethod to get rid of the back action term. From equation (29) one
can clearly see, that the atoms (here for Xs,0) couple at different times τ±t to different quadratures of the light
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field.However, to obtain a resonant interaction between atoms andmechanicsmediated by the lightfield, we
need a slightly different coupling. In particular, the cascaded interactionwe consider here has three time steps,
i.e. τ+t , t and τ−t . At each time step a different subsystem interacts with the lightfield by coupling to one of
its quadratures. In our case we have the following sequence of subsystems: atoms,mechanical oscillator, atoms.
We aim to achieve a situation, where in thefirst time step the atoms couple to (for instance) τ+P t( )d . Then, in
the next time step, themechanical oscillator has to couple to the canonical conjugated quadrature X t( )d to ‘read
out’ the information of the previous interaction. Finally in the last time step, the atoms again have to couple to
the τ−P t( )d -quadrature of the light field to obtain the informations about the interaction in the previous time
step. From this argument it is also clear, that the atoms can not exchange information via the lightfieldwith
themselves, since the both subsystems (i.e. atoms at times τ±t ) couple to the same lightfield quadrature.

To obtain the kind of interaction described above, we have to introduce a phase shift on the light quadratures
of the σ+-polarized light. In particular, we need a clockwise rotation of π 4. Physically, this corresponds to a
time retardation of π 4 of the standing σ+-polarizedwave on armC, cffigure 3. Thus, when the amplitude of the
σ−-polarized standingwave ismaximal, the amplitude of the σ+-polarized standingwave vanishes.

As displayed infigure 3we therefore introduce a phase shift on the light quadratures of the σ+-polarized
light. The classical σ−-polarized lightfield is not affected by the phase shift and hence the basis stays the same for
all time. Experimentally one could realize this phase shift by using a Faraday rotator, which puts both, a spatial
and a time retardation onto the σ+-polarized field.However, the corresponding spatial shift of the σ+-field can
be absorbed into the definition of the collective spinwavemodes, and is not discussed here further.

In order to incorporate the time retardation phase shift into our formalism, we have to consider that at the
different positions of the subsystems in our setup the basis of the quantum lightfield got rotated and therefore
we couple to different bases in theHamiltonian. Interactions with spatially separated subsystems can directly be
translated into retardations in theHamiltonian, which is a feature of the D1 -treatment. Hence, we have that
different times in theHamiltonians correspond to different subsystems and thus a different basis.

In particular we assume the following, cffigure 3. First, we start from the atomic ensemble at time τ+t ,
where theHamiltonian is not altered so far. At the position of themirror we passed once through the Faraday
rotator, and thereby the quadratures of the σ+-field got rotated by π 4, such that we couple at time t at themirror
to the new quadratures ′Xd and ′Pd as defined infigure 3. In the second step, at time τ−t another π 4-rotation is
applied to the quantum field and therefore the interaction between lightfield and atomic ensemble couples to a
third quadrature basis ″Xd and ″Pd , cffigure 3. The complete linearizedHamiltonian in an interaction picturew.
r.t. Hfield associatedwith themodified setup is then given by themodified interaction and the free evolution
H0,lin as defined in equation (28)

Figure 3.Modified setupwith a phase shift on the σ+-light. Below: change of quadrature basis due to the phase shift on σ+-lightfield at
different times τ±t and t.
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τ τ

τ τ

= + ℏ +

+ ℏ − + + +

+ − − −

H H g X t X t X

Ng P t X X t P

P t X X t P

2 ( ) ( )

2 ( ) ( )

( ) ( ) . (32)

c d

d s d s

d s d s

mod 0,lin m m

at ,0 ,0

,0 ,0

⎡⎣ ⎤⎦
⎡⎣

⎤⎦
Here, we expressed the primed bases ( ′Xd , ′Pd) and ( ″Xd , ″Pd ) in the original basis (Xd, Pd) by using the
transformations displayed infigure 3. Aswewill show in the following section, after eliminating the light field
Hmod provides an effective interaction between themechanicalmode and the collective spin excitationwithout a
backaction of the atoms on themselves.

2.6. Effective dynamics
Weare interested in deriving the effective dynamics of the coupling between themicro-mechanical resonator
and the collective excitation of the atomic ensemble. Therefore, wemake an adiabatic elimination of the field
modes in a Born–Markov approximation that accounts for the cascaded character of the system and is done in
the framework of quantum stochastic Schrödinger equation (QSSE) by using similarmethods as in [19]. In
particular, we consider the hierarchy of times scales

ω θ
τ

ω ω
≪ ≪ ≪1 1 1

,
1

, (33)
L m at

which implies that phase shifts due to the propagation of the light between atoms andmechanical system are
small. Themain results are presented in the following section and details of the calculation can be found in
appendix B.

2.6.1. Effectivemaster equation
Whereas the detailed calculations can be found in appendix B, we provide the resulting effectivemaster
equation:

ρ ρ γ ρ= −
ℏ

+H X˙
i

, , (34)eff m
diff

m
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

where the Lindblad contribution is defined by  ρ ρ ρ= −x x x x x[ ] { , }† 1

2
† and themechanical diffusion rate by

γ = g2 . (35)m
diff

m
2

The effectiveHamiltonian reads

∑ω ω
Ω

σ= ℏ + ℏ + − ℏH a a g X X
2

. (36)
j

j
seff m m

†
m at

OL
ss eff m ,0

⎛
⎝⎜

⎞
⎠⎟

with effective coupling rate

Ω Ω
Δ

ℓ= = + −
g Ng g

N
k2

2
. (37)eff at m L m

wherewe introduced the Rabi frequencies Ω α μ= ℏω± ±L
.

2.6.2. Decoherence
In the previous sectionwe concludedwith amaster equation for the effectively coupledmechanical oscillator-
atomic ensemble system. As a result of the adiabatic elimination of the light fieldwe already obtained the light-
induced diffusion of themechanical resonator γm

diff due to the coupling to thefield in formof the Lindblad term
in equation (34).

The light-induced diffusion of the atomic ensemble drops out due to the D1 -treatment aswell as the phase
shifts that we introduced in section 2.5, and therefore we have to add the proper diffusion of the atomic
ensemble.

The atomic decoherence rate γat
diff is the decoherence rate of a single collective excitation in the ensemble, i.e.

if one atom is in the ∣ 〉s state. This is equivalent to the single-atomphoton scattering rate

γ Γ Ω
Γ Δ Ω

=
+ +4 2

, (38)at
diff

2

2 2 2

whereΓ is the spontaneous emission rate andΩ is the Rabi frequency of the strong σ−-drive which can induce
off-resonant scattering on transitions between ∣ 〉s and the excited state ∣ 〉e , while ∣ 〉g is a dark state.

In addition to the light-induced diffusion, the system also faces thermal decoherence due to themechanical
oscillator coupling to its support, which is given by the coupling to a thermal bath atfinite temperatureT0:
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ρ ρ γ ρ γ ρ

γ ρ γ ρ

= −
ℏ

+ +

+ + +( )

H D X D S

N a N a

˙
i

,

1 [ ] , (39)

seff m
diff

m at
diff

,0

m m m m m m
†

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

where the thermal decoherence rate is given by γ ≈ +
ℏN

k T T

Qm m
( )B 0 eff

m
with Boltzmann constant kB, mechanical

quality factor ω γ=Qm m m, and effective temperature Teff of themechanical systemdue to laser heating [20].

3.Discussion and applications

In the previous sections, we reduced the description of our cascaded quantum system to an effectivemaster
equation in equation (39) that describes the coherent coupling betweenmechanical resonator and atomic
ensemble.However, as discussed in section 2.6.2 these coherent dynamics are accompanied by several noise
sources, such as thermal or light-induced diffusion.Our goal is to investigate regimes that yield interesting
applications. In the following, wefirst discuss the possibility to extend the calculations to various
optomechanical systems. Further, we present estimates on the coherent dynamics as well as sympathetic cooling.
Then, we compare the coupling to internal states and the coupling to themotional atomic states, see [20], and
finally we present experimental parameters and realizationswe have inmind.

3.1. Generic optomechanical system
Aswe have already shown in previous work [20], the scalingwith themechanical–light coupling gm is rather
generic and also applies to optomechanical configurations with e.g. high finesse cavities. In fact we can apply the
presented theoreticalmodel to any single-sided optomechanical systemby choosing the corresponding
mechanical–light coupling gm fromwhich one can infer themechanical diffusion rate γm

diff in equation (35) and
the effective coupling rate geff in equation (37).

Themost generalmechanical–light coupling rate in equation (13) for a single-sided optomechanical cavity
system is given by

α
π κ

=g
g2

, (40)m
om 0

where g0 is the general optomechanical single-photon coupling strength and κ the cavity line-width.With this
one could for instance calculate themechanical–light coupling for a photonic-crystal optomechanical cavity
(‘zipper cavity’) [22, 23], see section 3.5.

In the lines of our previouswork in [20] another interesting optomechanical system is the extension of the
above derivations for the idealmetallicmirror onto a ‘membrane-in-the-middle’-setup as visualized in
figure 1(b). The resultingmembrane–light coupling is then enhanced by the finesse  of the cavity

r
α

ℓ
π π

=g
k

2
4

2
, (41)m

mim L m
m

where rm is the reflectivity of themembrane6.

3.2. Coherent dynamics
As afirst applicationwe consider the observation of coherent dynamics between themechanical oscillator and
the spinwave excitation in the atomic ensemble. The coherent dynamics are induced by the interaction term
equation (36). In particular, we are interested in a regime, where the splitting of the two atomic ground states is
resonant with themechanical frequency, i.e. ω Ω ω+ ≈2at OL m aswell as ω ≫ gm eff . In that casewe can apply a
rotatingwave approximation to equation (36) such that we obtain a beamsplitter-type interactionHamiltonian

≈ −ℏ +( )H g a S S a . (42)s seff eff m
†

,0 ,0
†

m

This interaction allows for coherent transfer of single excitations between the spinwave and themechanical
mode.However, as discussed in section 2.6.2 the system suffers from various dissipation and diffusion processes.
Hence for coherent transfer of single excitations it is required that the coupling rate exceeds all decoherence
rates, which is expressed by the strong coupling conditions

γ γ γ≫g , , , (43)eff at
diff

m
diff

m
th

where γ γ= Nm
th

m m. Further, we define the totalmechanical decoherence rate γ γ γ= +m
tot

m
th

m
diff .

6
Equation (41) differs by a factor of 2 from equation (27) in [20] due to a typo in equation (20) in [20].Note also that we use a different

definition of the zero-point fluctuations compared to [20].

10

New J. Phys. 17 (2015) 043044 BVogell et al



By examining equation (37) wefind that for a given optomechanical system coupled to the atomic ensemble
the coupling rate can be optimized by varying the detuning, the laser power or the beamwaist of the laser.
However, all of these parameters also alter the decoherence rates γm

tot and γat
diff significantly. Thus, identifying

optimal values for beamwaist, detuning and laser power results in a tradeoff between optimization of the strong
coupling conditions on one side, and fulfilling the conditions for adiabatically eliminating the excited state ∣ 〉e as
well as keeping the Stark shift of the ∣ 〉s as low as possible.

In order to show the fulfilment of the strong coupling conditions and therefore the ability to observe
coherent dynamics, we display infigure 4 the ratios γgeff m

tot, as well as γgeff at
diff as functions of the effective

coupling, where all other parameters are fixed by the optimized values in table 1.
We can clearly see that the larger the effective coupling the better the fulfilment of the strong coupling

conditions. The upper bound for increasing the effective coupling is given by the rotatingwave approximation
thatwasmade to obtain theHamiltonian in equation (42), which is only valid in the limit where ω≪geff m.
Note, sincewefixed the values for beamwaist, laser power and detuning to the parameters in table 1, increasing
the effective coupling geff in figure 4 corresponds in principle to varying the density of the atomic ensemble.
Fromfigure 4we therefore conclude that the atomic density should be as large as possible with the limit that the
rotatingwave approximation is still valid. In table 1we assume a reasonable high atomic density.

As a second figure ofmerit for strong couplingwe define the cooperativity of the system as


γ γ

=
g4

, (44)0
eff
2

m
tot

at
diff

and plot it as a function of the effective coupling infigure 4.We observe that for awide range of values of the
effective coupling geff the cooperativity ismuch larger than one forfixed values of beamwaist, laser power and

detuning. Interestingly, there is a rangewhere  > 10 but the strong coupling condition γ <g 1eff m
tot . The

cooperativity as defined in equation (44) is only afigure ofmerit for the coherent dynamics, where for the case of
cooling themechanical oscillatorwe have to define amodified cooperativity as wewill discuss in the following
section.

Concludingwe find that the strong coupling conditions in equation (43) are fulfilled in awide range of
parameters. In table 2we summarize the coupling and decoherence rates as well as the cooperativity for a set of
optimized parameters given in table 1. These resulting strong coupling conditions are an improvement
considering the coupling to the atomicmotion, where the effective coupling and the decoherence rates were on
the same order [20].

3.3. Sympathetic cooling
The sophisticated atomic toolbox allows among other features to engineer dissipation. In particular we can
prepare the atomic ensemble near to the ground state by repumping its population. Together with coherent
interactions between atomic ensemble andmembranewe obtain a sympathetic cooling effect on themembrane
aswas recently shown for coupling to themotional atomic degrees of freedom [13].

Figure 4. Strong coupling conditions: we plot the ratios γgeff m
tot and γgeff at

diff as functions of the effective coupling geff by varying the
atomic area density ρA (upper axis) as a benchmark for the strong coupling conditions for both, themechanical and atomic
decoherence. Further, the cooperativity 0 for coherent dynamics is displayed as a function of the effective coupling. Parameters are
taken from table 1.
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In section 2.6.2we discussed the decoherence processes of the system. In particular we introduced the
atomic dissipation due to the strong coupling laser, which results already in a cooling or better re-pumping
process of the ensemble, cf equation (39). As a solid blue curve infigure 5(a)we display themechanical steady
state occupation resulting from the solution of themaster equation in equation (39).Here, only the intrinsic re-
pumping rate γat

diff accounts for pumping the atomic ensemble to ground state ∣ 〉g . Thuswe observe that for no
external re-pumping laser themechanical steady state occupation is already cooled down below ten quanta of
excitation.

However, to obtain ground state cooling of themechanical oscillator we need to introduce an additional re-
pumping laser on the side of the atomic ensemble, that impinges perpendicular to the quantization axis of the
setup onto the ensemble. Incorporating this additional re-pumping laser into themaster equation in
equation (39) is done by introducing an amplitude decaywith rate γat

cool on the side of the atoms

 
 

ρ ρ γ ρ γ γ ρ

γ ρ γ ρ

= −
ℏ

+ + +

+ + +

( )
( )

H X S

N a N a

˙
i

,

1 [ ] . (45)

seff m
diff

m at
diff

at
cool

,0

m m m m m m
†

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

In order derive themechanical occupation number for the sympathetic cooling schemewe have to solve the
fullmaster equation in equation (45)with theHamiltonian in equation (36). In doing sowefind that the system
(for small γm) is only stable in the limit

γ γ ω+ + >( ) g4 4 , (46)at
diff

at
cool 2

m
2

eff
2

which provides a cutoff for higher effective coupling rates infigure 5(a).Whereas in the case of strong coupling
as discussed in the previous section this inequality is automatically fulfilled, we have to include it when deriving
themechanical occupation. In principal this results in a cutoff for the effective coupling.

Infigure 5(a)we present the steady state occupation of themechanical oscillator as a function of the effective
coupling for three different external re-pumping rates γat

cool. Againwe clearly see that without external re-
pumping (blue, solid) themechanical oscillator can not be cooled to the ground state.

Table 1. Set of optimized parameters based on the considerations in sections 3 and 3.5. The first half
of the table describes themechanical parameters for the optomechanical system of a zipper-cavity
[22, 23], where ΔT P0 describes the absorption heating due to the laser. The second half of the table
displays the atomic and laser parameters, where μ is the transition dipolematrix element of the
D1-line of Rb87 . The values for the detuningΔ, the laser power P and the beamwaistw0 are optimized
within the given boundary conditions, and further details are given in section 3.5.

ωm π ×2 10 MHz

M × −4 10 14 kg

Qm 105

g0 π ×2 1.83 MHz

T0 4 K

ΔT P0 12 K mW−1

κ π ×2 4 GHz

ωL π ×2 378 THz

Δ π ×2 15 MHz

N ×8.5 106

w0 30 μm

μ × −2.54 10 29 Cm

Γ π ×2 5.75 MHz

P × −2.5 10 7 W

Table 2.Resulting coupling and decoherence rates aswell as cooperativity after choosing optimal
values for beamwaist, laser power and detuning.

geff π ×2 2.5 MHz

0 124.4

γm
diff π ×2 541 kHz

γat
diff π ×2 143 kHz

γm
th π ×2 844 kHz
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In the previous sectionwe introduced the optimized parameters in table 1 for which the effective coupling
takes the value π= ×g 2 2.5eff MHz.Using this, we find that a re-pumping rate γ = ×2 10at

cool 7 Hz (purple,
dotted)would allow for ground state cooling of themechanical oscillator. Choosing a smaller re-pumping rate
of γ = ×5 10at

cool 6 Hz (green, dashed) results in amechanical steady state occupation exactly at the edge of the
ground state.

Further, by adding a re-pumping laser on the side of the atomswe have amodified atomic dissipation and
therefore we have to redefine the cooperativity in equation (44). For the sympathetic cooling setupwe define the
cooperativity as


γ γ

=
g4

, (47)eff
2

m
tot

at
tot

with the total atomic decoherence rate γ γ γ= +at
tot

at
diff

at
cool. Infigure 5(b)we show the cooperativity for

sympathetic cooling as defined in equation (47) as a function of the effective coupling rate. For small values of
geff we clearlyfind that ground state cooling is not possible, which agrees with the numerical derivation of the
mechanical steady state occupation infigure 5(a).Hence, wefinally conclude that ground state cooling is
possible for reasonable parameter regimes.

3.4. Internal versusmotional states
Previously, systems that coupled themotion of themechanical oscillator to the center-of-massmotion of the
atomic ensemble [12, 19, 20] have been investigated. In thismanuscript we discussed a possible realization of

Figure 5. Sympathetic cooling of themechanical oscillator by externally re-pumping the atomic ensemble with rate γat
cool. (a) Steady

state occupation of themechanical oscillator as a function of the effective coupling by varying the atomic area density ρA (upper axis)
is shown. The different curves correspond to different external re-pumping rates. Parameters are taken from table 1. (b)Cooperativity
for sympathetic cooling setup as a function of the effective coupling by varying the atomic area density ρA (upper axis) is well above

one for the optimized coupling in table 2.Here, an external cooling rate of γ = ×2 10at
cool 7 Hz is chosen.
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coupling the internal degrees of freedom to themotion of themechanical oscillator. In the followingwe discuss
the important differences between the two different coupling schemes.

The coupling to themotional state of a harmonic oscillator leads to a Lamb–Dicke factor η ℓ= ≪k 1L ZPF in
the coupling. Since this factor is in general small, we profit in the case of internal state coupling fromnot having a
Lamb–Dicke factor on the side of the atoms.We can demonstrate this by comparing the effective coupling rate
for the internal states in the case of a ‘membrane-in-the-middle’ setup, equation (41) to the coupling of the
center-of-massmode to themechanical oscillator from equation (27) in [20]. The latter is given by

r ω
ℓ
ℓ

= ′ ∝g Ng g N2 , (48)com at m at
m

at
m

where ′gat
is defined by equation (22) in [20] divided by N and ℓ ω= ℏ m2at at are the atomic zero point

fluctuations. Calculating the quotient of both coupling rates yields

Ω Ω
Δ

ℓ
ω ℓ η

=
′

∝ = ≡+ −g

g

g

g
k

k

1 1
, (49)eff

com

at

at

L
at

at L at at

whereweused the definitionof theoptical lattice in [20], i.e. ω=V k m 20 L
2

at at
2 with lattice depth Ω Ω Δ= ℏ + −V0 .

In addition, note that the atomic-light diffusion γat
diff in themotional coupling is proportional to the atom-

field coupling gat
2 and thereby suppressed by a Lamb–Dicke factor squared. In the case of internal state coupling

we lose this suppression of the diffusion rate by the Lamb–Dicke factor, and therebywe have amuch higher
atomic diffusion rate. Nevertheless this is not necessarily a drawback since the γat

diff in equation (39) corresponds
to a cooling rate rather than a diffusion process as in themotional coupling, see [20].

Further, from the experimental point of view coupling to the internal atomic states has certain advantages
compared to themotional coupling. In themotional coupling, there is a resonance condition between the
frequencies ofmechanicalmode and atomic center-of-massmode.Optical lattice potentials are limited to trap
frequencies of several hundred kHz. This restriction no longer holds for internal states, since the resonance
condition depends on the splitting of the two ground states ∣ 〉s and ∣ 〉g . In general, the atomic levels offer a large
range of energy splittings that could be addressed, e.g. Zeeman-sublevels split bymagnetic fields in theMHz
range or hyperfine ground states with splittings in theGHz range. Thereby, the constraints on themechanical
frequency range aremuchmore relaxed. Finally, the internal state of the atoms can also be prepared and detected
with amuch higherfidelity than the center-of-massmotion.

3.5. Experimental parameters
In the following, we givemore details on possible experimental realizations. On the atomic side, we consider a
cloud of cold 87Rb atoms, which is routinely being prepared in numerous cold atom experiments. To calculate
the numberN of atoms that effectively couple to the optomechanical systemwe assume a homogeneous density
of 3 · 1017 m−3, which is one order ofmagnitude below the limit which can be reachedwith Raman sideband
cooling [31]. A realistic length of the atomic cloud of 1 cm yields an atomic area density of ρ ≈ ×3 10A

15 m−2.

Assuming the beamhas a circular shapewith radiusw0, the atomnumber is given by ρ π=N wA 0
2.

We consider themechanicalmode to be coupled to Zeeman-split sublevels of a long-lived atomic hyperfine
state.More specifically, we choose the two sublevels ∣ 〉 = ∣ = = − 〉g F m2, 2F and ∣ 〉 = ∣ = = 〉s F m2, 0F of the
52S 1 2 ground state. Using an externalmagnetic field, the splitting between ∣ 〉g and ∣ 〉s can be tuned into
resonancewith themechanical frequency ωm. The levels are coupled by aweak σ+-sideband and a strong
σ−-drive via the ∣ ′ = ′ = − 〉F m1, 2, 1F sublevels of the 52P 1 2 excited state (D1 transition: ω π =2 378L THz,
λ = 795 nm). If no sideband photons are present, the atomswill be optically pumped to the energetically lower
∣ 〉g -state.

Concerning the optomechanical system,wefirst consider a photonic-crystal optomechanical cavity (‘zipper
cavity’) whichwas developed in the group of Painter [22, 23]. Thesefibre-coupled nano-structured devices
combine low effectivemasses on the picogram scale with strong field gradients on thewavelength scale to obtain
huge single-photon coupling strengths g0. As realistic parameters for a zipper cavity we assume amechanical
modewith frequency ω π =2 10m MHz and π =g 2 1.830 MHz, cavity linewidth κ π =2 4 GHz,

= × −M 4 10 14 kg, =Q 10m
5, see table 1.We further assume a 4He cryogenic environment with =T 40 K to

minimize thermal dissipation. In order tomodel the heating due to the laser drive as discussed in section 2.6.2
we assume an absorption heating of Δ = −T P 12K mW0

1 (estimation based onmeasurements in [23]).
As optimization parameters to observe coherent dynamics (see section 3.2),we vary thebeampowerP, the

detuningΔ from the excited ′ =F 2 state and the beamradiusw0.Wefind an effective coupling rate
π= ×g 2 2.5eff MHzwhich is significantly higher than the atomic,mechanical and thermal diffusion rates

γ γ γ π= ×( , , ) 2 (143, 541, 844)at
diff

m
diff

m
eff kHz, cf table 2. These optimumvalues are achieved by tuning the laser

almost on resonancewith the atoms (Δ π =2 15 MHz) andmaking the beamas small as possible ( μ=w 300 m),
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i.e. keeping theRayleigh range longer than the atomic ensemble. Thepower = × −P 2.5 10 7 Wis just below
atomic saturation but far below the rangewherewe expect significant heating of the zipper cavity.

Second, we consider a ‘membrane-in-the-middle’ setup similar to that described in [13].While the
membrane properties are very similar to the ones in [13], we assume amore compact cavitywith a length of
about 1 mmand a higher finesse of  = 700which is placed in a cryogenic environment at =T 40 K, see table 3.
Heating by absorption of laser light ΔT P0 ismodeled as described in [20].

Analogous to the zipper cavity, wefind optimumparameters to observe coherent dynamics using theMIM
setup, see table 4. Here, compared to the zipper cavity, we are less limited by themechanical diffusion rates,
which allows us to use amuch higher laser power. However, in order to keep the atomic excitation small, we
need amuch larger detuning and/or a larger beam radius. Finally, the coherent coupling rate is one order of
magnitude smaller than for the zipper cavity and it is only slightly larger than the decoherence rates, placing the
system at the edge of strong coupling.

4. Conclusion

In summary, in this paper we have discussed the full quantummodel for a hybrid quantum system consisting of
amechanical resonator coupled to the internal states of an atomic ensemble. Coupling in particular to the
internal states of the atoms rather than themotional states offersmany advantages like tunability of frequencies
and full access to the atomic toolbox.We exploit these features of the internal state coupling and present, in
addition to the coherent dynamics, that the pre-cooledmechanical oscillator can be cooled to its ground state by
sympathetic cooling via the atomic ensemble. Further, the quantummodel is not limited to a specific
mechanical system, but can be generalized onto variousmechanical resonators such asmembranes or photonic
crystal cavities.We conclude our derivations by comparing the proposal to previous work onmotional state
coupling [20].
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AppendixA.Hamiltonianwithout phase shift

From equation (29)we can derive an effective interaction betweenmechanical resonator and the S0 spinmode of
the atomic ensemble by eliminating the lightfield. In doing so, we eliminate themediating lightfields of σ±
-polarized light using the formalism described in appendix B. Finally, the resultingHamiltonian then reads

= −ℏ − ℏ +( )H Ng g X X Ng X P2 . (A.1)s s seff
lin

m at m ,0 at
2

,0
2

,0
2

In addition to the coupling of the ensemble to themechanical resonator the effective atom–mechanics
interactionHamiltonian in equation (A.1) has a second contribution from the backaction of the atomic
ensemble on itself. This atom–atom interaction is enhanced by the number of atoms and therebymuch stronger
than the atom–mechanics interaction term.Hence, for the purpose of coherent interaction between atomic
ensemble andmechanical resonator, it is undesirable to have this contribution.Modifying the setup slightly by

Table 3.Properties of the ‘membrane-in-the-middle’ system.

ωm π ×2 276 kHz

M × −4 10 10 kg

Qm ×1.9 106

rm 0.4

 700

g0 π ×2 175 Hz

T0 4 K

ΔT P0 2.2 K mW−1

κ π ×2 232 MHz
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introducing phase shifts on the quadratures of the quantum field is oneway to resolve this problem and remove
the atom–atombackaction term.

Appendix B. Adiabatic elimination

In the following, we summarize the calculations leading to an effective description of themechanical oscillator
coupled to the atomic ensemble.

Therefore, we start with the fully linearizedHamiltonian in equation (32) that is in a rotating framewith
respect to Hfield. TheHamiltonian includes the interaction between themechanical resonator as well as the
atomic ensemble with the lightfield. The system is then governed by the Schoredinger equation

Ψ Ψ= −
ℏt
H t

d

d

i
( ) . (B.1)mod

Note that all optical frequencies are removed from H t( )mod and further thatwe assumed all photonsmediating
the relevant interactions have frequencies in a bandwidth θ2 around the laser frequency ωL.

We are interested in a situation, where θ → ∞ such that thefield operators in equation (16) become
δ-correlated. In this so-calledwhite noise limit we can interpret equation (B.1) as aQSSE of Stratonovich type
with time delays [32]. By integrating equation (B.1) in small time steps Δt up to second order in the interaction
Hamiltonian, we obtain an effective interaction between atomic ensemble andmechanical resonator, that is
mediated by the photons. This is basically a Born–Markov approximation in the coupling between subsystems
(atomic/mechanical) and field.We further assume that thefield is initially in the vacuum state. By taking the
time ordering of the interactions into account and further taking the limit Δ →t 0, we end upwith aQSSE of
Ito-typewithout time delays. This result can then be used to derive an effectivemaster equation for the coupling
betweenmechanical and atomic subsystem.

Summarizing the complete hierarchy of timescales wefind

ω θ
τ Δ

ω
≪ ≪ ∣ ∣ ≪ ≪t

g g

1 1 1
,

1
,

1
, (B.2)

L m
2

at
2

m,at

wherewe have ω θ ω≫ ≫L m,at from the definition of the bandwidth θ in equations (14) and (15). Further, the
time interval Δt of the integration ismuch longer than the propagation times τ between the systems, butmuch
shorter than the system timescales. Finally, θ τ≪ ∣ ∣1 is needed to be able to distinguish the temporal order of
photon emission and reabsorption events in the interaction.

B.1. SolvingQSSE (Stratonovich type)with time delays
From the Schrödinger equation in equation (B.1)we obtain the time evolution of the state Ψ∣ 〉t( )0 for some
initial time t0 by

Ψ Δ Δ Ψ+ =( ) ( ) ( )t t U t t t, (B.3)0 0 0

with time evolution operator for the time internval Δt

∫Δ = − ℏ
Δ+

( )U t t, e . (B.4)
s H s

0

i d ( )
t

t t

0

0
mod

Weassume that the time interval Δt ismuch longer than the time delays τi andmuch shorter than the system
evolution, i.e. coupling strength and decays, cf equation (B.2).We expand the right-hand side of equation (B.3)

Table 4.Thefirst four lines are an optimized set of parameters to observe coherent dynamics in the
‘membrane-in-the-middle’ setup. Further, the coherent coupling rate and cooperativity aswell as all
decoherence rates are given for the case of a ‘membrane-in-the-middle’ setup.

Δ π ×2 1.1 GHz

w0 μ50 m

P 2.5 mW

N ×2.4 107

geff π ×2 150 kHz

0 6.5

γm
diff π ×2 15 kHz

γat
diff π ×2 113 kHz

γm
th π ×2 105 kHz
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in the time interval Δt up to second order in theHamiltonian:

∫

∫ ∫

Δ Ψ

Ψ

≈ −
ℏ

−
ℏ

′ ′

Δ

Δ

+

+

( ) ( )

( )

U t t t s H s

s H s s H s t

, 1
i

d ( )

1
d ( ) d ( ) , (B.5)

t

t t

t

t t

t

s

0 0 mod

2 mod mod 0

0

0

0

0

0

⎧⎨⎩
⎫⎬⎭

where the bounds of the second integral in the third term account for the time ordering.We expand the above
expression up tofirst order in Δt . Further, we assume that the field is initially in a vacuum state such that the
initial wave function reads Ψ Ψ∣ 〉 = ∣ 〉 ⨂∣ 〉t t( ) ( ) 00 0 sys field. As a result, we neglect all termswith annihilation
operators acting directly on the initial state aswell as termswith two consecutive creation operators, because
they are of higher order [19]. Evaluating the second term in equation (B.5) yields:

Δ Δ Δ

Δ τ Δ τ

Δ τ Δ τ Ψ

−
ℏ

+ +

+ − −

+ − − }

( ) ( )

( ) ( )
( ) ( ) ( )

H
t g X C t D t

Ng X D t D t

Ng P D t D t t

i , 0 , 0

i , ,

, , . (B.6)

s

s

0,lin
m m

†
0

†
0

at ,0
†

0
†

0

at ,0
†

0
†

0 0

⎧⎨⎩
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

Here, we introduced the noise-increment operators

∫Δ τ τ± = ±
Δ+

( )D t s s, d d ( ) (B.7)
t

t t
†

0
†

0

0

∫Δ τ τ± = ±
Δ+

( )C t s c s, d ( ) (B.8)
t

t t
†

0
†

0

0

with commutation relations

Δ τ Δ τ Δ τ τ Δ= − − ≈( ) ( )D t D t t t, , , ( ) , (B.9)0 1
†

0 2 1 2
⎡⎣ ⎤⎦

and same for ΔC t( ). In the last step of equation (B.9), we assumed that the time delays τi of the system aremuch
smaller than the considered time interval Δt .

The third term in equation (B.5) has four contributions from evaluating the product of the two
Hamiltonians Hmod. Sincewe only keep contributions up tofirst order in Δt , we can directly drop three of these
terms, which leaves uswith

Δ Ψ− − ( )g X Ng g X X t ti2 , (B.10)sm
2

m
2

at m m ,0 0
⎡⎣ ⎤⎦

wherewe used that thefield is initially in the vacuum state, such that

Ψ Ψ′ ∣ 〉 = ′ ∣ 〉t t t t t td( )d ( ) ( ) d( ), d ( ) ( )†
0

†
0

⎡⎣ ⎤⎦ .

In the endwewant to have a differential formof equation (B.3), which is achieved by sending Δ →t 0. In
order to do so, we have tomaintain the hierarchy of timescales in equation (B.2). Since the first two timescales
( ω θ1 , 1L ) already disappeared from the problem,we start by sending τ → 0. The latter is equivalent to

neglecting the retardations, which leads to Δ τ Δ Δ± = ≡D t D t D t( , ) ( , 0) ( )†
0

†
0

†
0 . Finally, we take the limit

Δ →t 0 such that we can rewrite equation (B.3) in differential form. The result then gives us the time evolution
for an interval dt.We assume that each time interval does not depend on the previous one (Markov
approximation), and therefore the above result is valid for all t, such that we canwrite

Ψ Ψ Ψ

Ψ

= + −

= −
ℏ

− −

+ + }

t t t

H
g X Ng g X X t

g X C t D t t

d ( d ) ( )

i i 2 d

d ( ) d ( ) ( ) , (B.11)

s
0,lin

m
2

m
2

at m m ,0

m m
† †

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎡⎣ ⎤⎦⎤⎦
where Δ=

Δ →
D t D td ( ) lim ( )

t 0
and similar for C td ( ). These noise-increment operators D td ( ) fulfill the Ito table

forfields in vacuum, i.e. = =D D D Dd d d d 0† † and =D D td d d† [32].

B.2. Effectivemaster equation
In order to obtain themaster equation from equation (B.11), we consider the evolution of the full densitymatrix
and subsequently trace over the light field. According to the Ito calculus, we have
ρ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ= ∣ 〉〈 ∣ = ∣ 〉 〈 ∣ + ∣ 〉 〈 ∣ + ∣ 〉 〈 ∣d ˆ d( ) (d ) (d ) (d )(d ), where ρ̂ is the densitymatrix of the full
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system.We insert equation (B.11) in this expression and neglect all contributions of the order higher than td .
Subsequently, we trace over the field degrees of freedomwith

ρ ρ ρ ρ

ρ ρ ρ

= = = =

= ≈

( ) ( ) ( ) ( )
( ) ( )

C C D D

C C D D t

Tr d ˆ Tr d ˆ Tr d ˆ Tr d ˆ 0

Tr d ˆd Tr d ˆd d , (B.12)

fi
†

fi fi
†

fi

fi
†

fi
†

wherewe used the Ito table for vacuumfield and defined ρ ρ= Tr ( ˆ)fi as the reduced densitymatrix for the atom–

mechanics system. This results in themaster equation in equation (34)with effectiveHamiltonian in
equation (36).
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