3,599 research outputs found
Experimental studies on the reaction kinetics of 1,1-dimethylhydrazine and oxygen
Measurements behind shock waves in highly diluted 1,1 dimethylhydrazine-O2-Ar mixtures clearly showed a two-stage reaction. In the first stage, UDMH decomposes via a unimolecular step; in the second stage, clearly separated from the first one, the decay products react further with O2. Values for the rate constant of unimolecular decomposition were obtained
Roche volume filling and the dissolution of open star clusters
From direct N-body simulations we find that the dynamical evolution of star
clusters is strongly influenced by the Roche volume filling factor. We present
a parameter study of the dissolution of open star clusters with different Roche
volume filling factors and different particle numbers. We study both Roche
volume underfilling and overfilling models and compare with the Roche volume
filling case. We find that in the Roche volume overfilling limit of our
simulations two-body relaxation is no longer the dominant dissolution mechanism
but the changing cluster potential. We call this mechnism "mass-loss driven
dissolution" in contrast to "two-body relaxation driven dissolution" which
occurs in the Roche volume underfilling regime. We have measured scaling
exponents of the dissolution time with the two-body relaxation time. In this
experimental study we find a decreasing scaling exponent with increasing Roche
volume filling factor. The evolution of the escaper number in the Roche volume
overfilling limit can be described by a log-logistic differential equation. We
report the finding of a resonance condition which may play a role for the
evolution of star clusters and may be calibrated by the main periodic orbit in
the large island of retrograde quasiperiodic orbits in the Poincar\'e surfaces
of section. We also report on the existence of a stability curve which may be
of relevance with respect to the structure of star clusters.Comment: 14 pages, 10+1 figures, accepted by Astronomische Nachrichte
Modulation of sterol homeostasis by the Cdc42p effectors Cla4p and Ste20p in the yeast Saccharomyces cerevisiae
This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Authors.The conserved Rho-type GTPase Cdc42p is a key regulator of signal transduction and polarity in eukaryotic cells. In the yeast Saccharomyces cerevisiae, Cdc42p promotes polarized growth through the p21-activated kinases Ste20p and Cla4p. Previously, we demonstrated that Ste20p forms a complex with Erg4p, Cbr1p and Ncp1p, which all catalyze important steps in sterol biosynthesis. CLA4 interacts genetically with ERG4 and NCP1. Furthermore, Erg4p, Ncp1p and Cbr1p play important roles in cell polarization during vegetative growth, mating and filamentation. As Ste20p and Cla4p are involved in these processes it seems likely that sterol biosynthetic enzymes and p21-activated kinases act in related pathways. Here, we demonstrate that the deletion of either STE20 or CLA4 results in increased levels of sterols. In addition, higher concentrations of steryl esters, the storage form of sterols, were observed in cla4Δ cells. CLA4 expression from a multicopy plasmid reduces enzyme activity of Are2p, the major steryl ester synthase, under aerobic conditions. Altogether, our data suggest that Ste20p and Cla4p may function as negative modulators of sterol biosynthesis. Moreover, Cla4p has a negative effect on steryl ester formation. As sterol homeostasis is crucial for cell polarization, Ste20p and Cla4p may regulate cell polarity in part through the modulation of sterol homeostasis.Deutsche Forschungsgemeinschaft and the Austrian FWF
Optimization of Master Alloy Amount and Gating System Design for Ductile Cast Iron Obtain in Lost Foam Process
The paper presents the optimization of master alloy amount for the high nodular graphite yield (80-90%) in cast iron obtain in lost foam process. The influence of the gating system configuration and the shape of the reaction chamber, the degree of spheroidisation cast iron was examined. Research has shown that the, optimal of master alloy amount of 1.5% by mass on casting iron. The degree of spheroidisation is also influenced by the gating system configuration. The best spheroidisation effect was obtained for liquid cast iron was fed into the reaction chamber from the bottom and discharged from the top
Continued-fraction expansion of eigenvalues of generalized evolution operators in terms of periodic orbits
A new expansion scheme to evaluate the eigenvalues of the generalized
evolution operator (Frobenius-Perron operator) relevant to the
fluctuation spectrum and poles of the order- power spectrum is proposed. The
``partition function'' is computed in terms of unstable periodic orbits and
then used in a finite pole approximation of the continued fraction expansion
for the evolution operator. A solvable example is presented and the approximate
and exact results are compared; good agreement is found.Comment: CYCLER Paper 93mar00
Coherence resonance in a network of FitzHugh-Nagumo systems: interplay of noise, time-delay and topology
We systematically investigate the phenomena of coherence resonance in
time-delay coupled networks of FitzHugh-Nagumo elements in the excitable
regime. Using numerical simulations, we examine the interplay of noise,
time-delayed coupling and network topology in the generation of coherence
resonance. In the deterministic case, we show that the delay-induced dynamics
is independent of the number of nearest neighbors and the system size. In the
presence of noise, we demonstrate the possibility of controlling coherence
resonance by varying the time-delay and the number of nearest neighbors. For a
locally coupled ring, we show that the time-delay weakens coherence resonance.
For nonlocal coupling with appropriate time-delays, both enhancement and
weakening of coherence resonance are possible
Collective motions in globally coupled tent maps with stochastic updating
We study a generalization of globally coupled maps, where the elements are
updated with probability . When is below a threshold , the
collective motion vanishes and the system is the stationary state in the large
size limit. We present the linear stability analysis.Comment: 6 pages including 5 figure
The X-ray Properties of the Most-Luminous Quasars from the Sloan Digital Sky Survey
Utilizing 21 new Chandra observations as well as archival Chandra, ROSAT, and
XMM-Newton data, we study the X-ray properties of a representative sample of 59
of the most optically luminous quasars in the Universe (M_i~~-29.3 to -30.2)
spanning a redshift range of z~~1.5-4.5. Our full sample consists of 32 quasars
from the Sloan Digital Sky Survey (SDSS) Data Release 3 (DR3) quasar catalog,
two additional objects in the DR3 area that were missed by the SDSS selection
criteria, and 25 comparably luminous quasars at z>~4. This is the largest X-ray
study of such luminous quasars to date. By jointly fitting the X-ray spectra of
our sample quasars, excluding radio-loud and broad absorption line (BAL)
objects, we find a mean X-ray power-law photon index of
Gamma=1.92^{+0.09}_{-0.08} and constrain any neutral intrinsic absorbing
material to have a mean column density of N_H<~2x10^{21} cm^{-2}. We find,
consistent with other studies, that Gamma does not change with redshift, and we
constrain the amount of allowed Gamma evolution for the most-luminous quasars.
Our sample, excluding radio-loud and BAL quasars, has a mean X-ray-to-optical
spectral slope of a_ox=-1.80+/-0.02, as well as no significant evolution of
a_ox with redshift. We also comment upon the X-ray properties of a number of
notable quasars, including an X-ray weak quasar with several strong narrow
absorption-line systems, a mildly radio-loud BAL quasar, and a well-studied
gravitationally lensed quasar.Comment: 18 pages (emulateapj), 11 figures. Accepted for publication in The
Astrophysical Journa
On the Mechanism of Time--Delayed Feedback Control
The Pyragas method for controlling chaos is investigated in detail from the
experimental as well as theoretical point of view. We show by an analytical
stability analysis that the revolution around an unstable periodic orbit
governs the success of the control scheme. Our predictions concerning the
transient behaviour of the control signal are confirmed by numerical
simulations and an electronic circuit experiment.Comment: 4 pages, REVTeX, 4 eps-figures included Phys. Rev. Lett., in press
also available at
http://athene.fkp.physik.th-darmstadt.de/public/wolfram.htm
Bifurcations in Globally Coupled Map Lattices
The dynamics of globally coupled map lattices can be described in terms of a
nonlinear Frobenius--Perron equation in the limit of large system size. This
approach allows for an analytical computation of stationary states and their
stability. The complete bifurcation behaviour of coupled tent maps near the
chaotic band merging point is presented. Furthermore the time independent
states of coupled logistic equations are analyzed. The bifurcation diagram of
the uncoupled map carries over to the map lattice. The analytical results are
supplemented with numerical simulations.Comment: 19 pages, .dvi and postscrip
- …
