Abstract

The dynamics of globally coupled map lattices can be described in terms of a nonlinear Frobenius--Perron equation in the limit of large system size. This approach allows for an analytical computation of stationary states and their stability. The complete bifurcation behaviour of coupled tent maps near the chaotic band merging point is presented. Furthermore the time independent states of coupled logistic equations are analyzed. The bifurcation diagram of the uncoupled map carries over to the map lattice. The analytical results are supplemented with numerical simulations.Comment: 19 pages, .dvi and postscrip

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019