47 research outputs found

    Discerning the origins of the Negritos, first Sundaland people: Deep divergence and archaic admixture

    No full text
    Human presence in Southeast Asia dates back to at least 40,000 years ago, when the current islands formed a continental shelf called Sundaland. In the Philippine Islands, Peninsular Malaysia, and Andaman Islands, there exist indigenous groups collectively called Negritos whose ancestry can be traced to the “First Sundaland People.” To understand the relationship between these Negrito groups and their demographic histories, we generated genome-wide single nucleotide polymorphism data in the Philippine Negritos and compared them with existing data from other populations. Phylogenetic tree analyses show that Negritos are basal to other East and Southeast Asians, and that they diverged from West Eurasians at least 38,000 years ago. We also found relatively high traces of Denisovan admixture in the Philippine Negritos, but not in the Malaysian and Andamanese groups, suggesting independent introgression and/or parallel losses involving Denisovan introgressed regions. Shared genetic loci between all three Negrito groups could be related to skin pigmentation, height, facial morphology and malarial resistance. These results show the unique status of Negrito groups as descended from the First Sundaland People

    The history of human populations in the Japanese Archipelago inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations

    Get PDF
    The Japanese Archipelago stretches over 4000 km from north to south, and is the homeland of the three human populations; the Ainu, the Mainland Japanese and the Ryukyuan. The archeological evidence of human residence on this Archipelago goes back to 430 000 years, and various migration routes and root populations have been proposed. Here, we determined close to one million single-nucleotide polymorphisms (SNPs) for the Ainu and the Ryukyuan, and compared these with existing data sets. This is the first report of these genome-wide SNP data. Major findings are: (1) Recent admixture with the Mainland Japanese was observed for more than one third of the Ainu individuals from principal component analysis and frappe analyses; (2) The Ainu population seems to have experienced admixture with another population, and a combination of two types of admixtures is the unique characteristics of this population; (3) The Ainu and the Ryukyuan are tightly clustered with 100% bootstrap probability followed by the Mainland Japanese in the phylogenetic trees of East Eurasian populations. These results clearly support the dual structure model on the Japanese Archipelago populations, though the origins of the Jomon and the Yayoi people still remain to be solved

    Ancient Jomon genome sequence analysis sheds light on migration patterns of early East Asian populations

    Get PDF
    Funder: The excavation of the Ikawazu Jomon individual was supported by Grant-in-Aid for Scientific Research (B) (25284157) to YY. The Ikawazu Jomon genome project was organized by HI, and TH & HO who were supported by MEXT KAKENHI Grant Numbers 16H06408 and 17H05132, by Grant-in-Aid for Scientific Research on Innovative Areas (Cultural History of Paleoasia), and by Grant-in-Aid for Challenging Exploratory Research (23657167) and for Scientific Research (B) (17H03738). The Ikawazu Jomon genome sequencing was supported by JSPS KAKENHI Grant Number 16H06279 to ATo, and partly supported in the CHOZEN project in Kanazawa University, and in the Cooperative Research Project Program of the Medical Institute of Bioregulation, Kyushu University. Computations for the Ikawazu Jomon genome were partially performed on the NIG supercomputer at ROIS National Institute of Genetics.Abstract: Anatomically modern humans reached East Asia more than 40,000 years ago. However, key questions still remain unanswered with regard to the route(s) and the number of wave(s) in the dispersal into East Eurasia. Ancient genomes at the edge of the region may elucidate a more detailed picture of the peopling of East Eurasia. Here, we analyze the whole-genome sequence of a 2,500-year-old individual (IK002) from the main-island of Japan that is characterized with a typical Jomon culture. The phylogenetic analyses support multiple waves of migration, with IK002 forming a basal lineage to the East and Northeast Asian genomes examined, likely representing some of the earliest-wave migrants who went north from Southeast Asia to East Asia. Furthermore, IK002 shows strong genetic affinity with the indigenous Taiwan aborigines, which may support a coastal route of the Jomon-ancestry migration. This study highlights the power of ancient genomics to provide new insights into the complex history of human migration into East Eurasia

    Experimental evidence reveals the UCP1 genotype changes the oxygen consumption attributed to non-shivering thermogenesis in humans

    Get PDF
    Humans have spread out all over the world adapting to many different cold environments. Recent worldwide genome analyses and animal experiments have reported dozens of genes associated with cold adaptation. The uncoupling protein 1 (UCP1) gene enhances thermogenesis reaction in a physiological process by blocking ATP (adenosine triphosphate) synthesis on a mitochondrial membrane in brown adipose tissues. To our knowledge, no previous studies have shown an association between variants of the UCP1 gene and physiological phenotypes concerning non-shivering thermogenesis (NST) under the condition of low temperature in humans. We showed that the degree of NST for healthy subjects in an artificial climate chamber is significantly different among UCP1 genotypes. Defining the haplotypes covering the UCP1 region (39.4?kb), we found that the frequency of the haplotype with the highest NST was significantly correlated with latitudes and ambient temperature. Thus, the data in this study provide the first evidence that the UCP1 genotype alters the efficiency of NST in humans, and likely supports the hypothesis that the UCP1 gene has been related to cold adaptation in human evolutionary history

    Allele Polymorphism and Haplotype Diversity of HLA-A, -B and -DRB1 Loci in Sequence-Based Typing for Chinese Uyghur Ethnic Group

    Get PDF
    Previous studies indicate that the frequency distributions of HLA alleles and haplotypes vary from one ethnic group to another or between the members of the same ethnic group living in different geographic areas. It is necessary and meaningful to study the high-resolution allelic and haplotypic distributions of HLA loci in different groups.High-resolution HLA typing for the Uyghur ethnic minority group using polymerase chain reaction-sequence-based-typing method was first reported. HLA-A, -B and -DRB1 allelic distributions were determined in 104 unrelated healthy Uyghur individuals and haplotypic frequencies and linkage disequilibrium parameters for HLA loci were estimated using the maximum-likelihood method. A total of 35 HLA-A, 51 HLA-B and 33 HLA-DRB1 alleles were identified at the four-digit level in the population. High frequency alleles were HLA-A*1101 (13.46%), A*0201 (12.50%), A*0301 (10.10%); HLA-B*5101(8.17%), B*3501(6.73%), B*5001 (6.25%); HLA-DRB1*0701 (16.35%), DRB1*1501 (8.65%) and DRB1*0301 (7.69%). The two-locus haplotypes at the highest frequency were HLA-A*3001-B*1302 (2.88%), A*2402-B*5101 (2.86%); HLA-B*5001-DRB1*0701 (4.14%) and B*0702-DRB1*1501 (3.37%). The three-locus haplotype at the highest frequency was HLA-A*3001-B*1302-DRB1*0701(2.40%). Significantly high linkage disequilibrium was observed in six two-locus haplotypes, with their corresponding relative linkage disequilibrium parameters equal to 1. Neighbor-joining phylogenetic tree between the Uyghur group and other previously reported populations was constructed on the basis of standard genetic distances among the populations calculated using the four-digit sequence-level allelic frequencies at HLA-A, HLA-B and HLA-DRB1 loci. The phylogenetic analyses reveal that the Uyghur group belongs to the northwestern Chinese populations and is most closely related to the Xibe group, and then to Kirgiz, Hui, Mongolian and Northern Han.The present findings could be useful to elucidate the genetic background of the population and to provide valuable data for HLA matching in clinical bone marrow transplantation, HLA-linked disease-association studies, population genetics, human identification and paternity tests in forensic sciences

    Identification of Close Relatives in the HUGO Pan-Asian SNP Database

    Get PDF
    The HUGO Pan-Asian SNP Consortium has recently released a genome-wide dataset, which consists of 1,719 DNA samples collected from 71 Asian populations. For studies of human population genetics such as genetic structure and migration history, this provided the most comprehensive large-scale survey of genetic variation to date in East and Southeast Asia. However, although considered in the analysis, close relatives were not clearly reported in the original paper. Here we performed a systematic analysis of genetic relationships among individuals from the Pan-Asian SNP (PASNP) database and identified 3 pairs of monozygotic twins or duplicate samples, 100 pairs of first-degree and 161 second-degree of relationships. Three standardized subsets with different levels of unrelated individuals were suggested here for future applications of the samples in most types of population-genetics studies (denoted by PASNP1716, PASNP1640 and PASNP1583 respectively) based on the relationships inferred in this study. In addition, we provided gender information for PASNP samples, which were not included in the original dataset, based on analysis of X chromosome data

    Population Genetic Structure of Peninsular Malaysia Malay Sub-Ethnic Groups

    Get PDF
    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia

    Mapping human genetic diversity in Asia

    Get PDF
    Asia harbors substantial cultural and linguistic diversity, but the geographic structure of genetic variation across the continent remains enigmatic. Here we report a large-scale survey of autosomal variation from a broad geographic sample of Asian human populations. Our results show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography. Most populations show relatedness within ethnic/linguistic groups, despite prevalent gene flow among populations. More than 90% of East Asian (EA) haplotypes could be found in either Southeast Asian (SEA) or Central-South Asian (CSA) populations and show clinal structure with haplotype diversity decreasing from south to north. Furthermore, 50% of EA haplotypes were found in SEA only and 5% were found in CSA only, indicating that SEA was a major geographic source of EA populations

    Wild and Valuable? Tourist Values for Orang-utan Conservation in Sarawak

    No full text
    Fluffy, orange and endearing, orang-utans have won the hearts of people all over the world. However, all sub-species are endangered in the wild with the Bornean orang-utan population having declined by more than 50% over the past 60 years. Fewer than 2,000 wild orang-utans remain in Sarawak with nearly all truly wild ones confined to a remote site on the Indonesian border. Yet each year thousands of tourists and local Sarawak people see orang-utans semi-wild in a reserve or captive in a rehabilitation centre
    corecore